Synthesis and characterization of dextran ester derivatives and their adhesive properties

Abstract Polysaccharides are promising renewable alternatives to petroleum-based plastics, and are high-value-added materials in various industries. In this work, we synthesized dextran (α-1,6-glucan) ester derivatives substituting acyl groups with different carbon numbers from acetate to laurate. W...

Full description

Bibliographic Details
Main Authors: Azusa Togo, Yukiko Enomoto, Akio Takemura, Tadahisa Iwata
Format: Article
Language:English
Published: SpringerOpen 2019-12-01
Series:Journal of Wood Science
Subjects:
Online Access:https://doi.org/10.1186/s10086-019-1845-x
Description
Summary:Abstract Polysaccharides are promising renewable alternatives to petroleum-based plastics, and are high-value-added materials in various industries. In this work, we synthesized dextran (α-1,6-glucan) ester derivatives substituting acyl groups with different carbon numbers from acetate to laurate. We found that the thermal stability of dextran was improved by esterification. Moreover, using differential scanning calorimetry and X-ray diffraction, we revealed that dextran ester derivatives were amorphous. Self-standing, transparent, solvent-cast films of dextran ester derivatives were prepared. Dextran ester derivatives adhered to various materials, including polyvinyl alcohol (PVA) films, wood, glass, and aluminum. In addition, the adhesive interfaces were transparent, which is important for practical applications. The adhesive strength for PVA films increased with concentration, exceeding the breaking strength of the PVA film at 0.3 g/mL. Moreover, dextran valerate and dextran hexanoate behaved as hot-melt-type adhesives. These results demonstrate the potential of dextran ester derivatives as biomass-based adhesives.
ISSN:1435-0211
1611-4663