Summary: | In addition to challenges like climate change and biodiversity loss, the sustainability and resilience of agrifood systems worldwide are currently challenged by new threats, such as the COVID-19 pandemic and the Ukraine war. Furthermore, the resilience and sustainability of our agrifood systems need to be enhanced in ways that simultaneously increase agricultural production, decrease post-harvest food losses and food waste, protect the climate, environment and health, and preserve biodiversity. The precarious situation of agrifood systems is also illustrated by the fact that overall, around 3 billion people worldwide still do not have regular access to a healthy diet. This results in various forms of malnutrition, as well as increasing number of people suffering from overweight and obesity, and diet-related, non-communicable diseases (NCDs) around the world. Findings from microbiome research have shown that the human gut microbiome plays a key role in nutrition and diet-related diseases and thus human health. Furthermore, the microbiome of soils, plants, and animals play an equally important role in environmental health and agricultural production. Upcoming, microbiome-based solutions hold great potential for more resilient, sustainable, and productive agrifood systems and open avenues toward preventive health management. Microbiome-based solutions will also be key to make better use of natural resources and increase the resilience of agrifood systems to future emerging and already-known crises. To realize the promises of microbiome science and innovation, there is a need to invest in enhancing the role of microbiomes in agrifood systems in a holistic One Health approach and to accelerate knowledge translation and implementation.
|