Forward Greedy Searching to <i>κ</i>-Reduct Based on Granular Ball

As a key part of data preprocessing, namely attribute reduction, is effectively applied in the rough set field. The purpose of attribute reduction is to prevent too many attributes from affecting classifier operations and reduce the dimensionality of data space. Presently, in order to further improv...

Full description

Bibliographic Details
Main Authors: Minhui Song, Jianjun Chen, Jingjing Song, Taihua Xu, Yan Fan
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/5/996
Description
Summary:As a key part of data preprocessing, namely attribute reduction, is effectively applied in the rough set field. The purpose of attribute reduction is to prevent too many attributes from affecting classifier operations and reduce the dimensionality of data space. Presently, in order to further improve the simplification performance of attribute reduction, numerous researchers have proposed a variety of methods. However, given the current findings, the challenges are: to reasonably compress the search space of candidate attributes; to fulfill multi-perspective evaluation; and to actualize attribute reduction based on guidance. In view of this, forward greedy searching to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>κ</mi></semantics></math></inline-formula>-reduct based on granular ball is proposed, which has the following advantages: (1) forming symmetrical granular balls to actualize the grouping of the universe; (2) continuously merging small universes to provide guidance for subsequent calculations; and (3) combining supervised and unsupervised perspectives to enrich the viewpoint of attribute evaluation and better improve the capability of attribute reduction. Finally, based on three classifiers, 16 UCI datasets are used to compare our proposed method with six advanced algorithms about attribute reduction and an algorithm without applying any attribute reduction algorithms. The experimental results indicate that our method can not only ensure the result of reduction has considerable performance in the classification test, but also improve the stability of attribute reduction to a certain degree.
ISSN:2073-8994