A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan
Transboundary particulate matter (PM) pollution has become an increasingly significant public health issue around the world due to its impacts on human health. However, transboundary PM pollution is difficult to address because it usually travels across multiple urban jurisdictional boundaries with...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-05-01
|
Series: | Frontiers in Public Health |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpubh.2022.875924/full |
_version_ | 1828747965953474560 |
---|---|
author | Jianzheng Liu Hung Chak Ho Hung Chak Ho |
author_facet | Jianzheng Liu Hung Chak Ho Hung Chak Ho |
author_sort | Jianzheng Liu |
collection | DOAJ |
description | Transboundary particulate matter (PM) pollution has become an increasingly significant public health issue around the world due to its impacts on human health. However, transboundary PM pollution is difficult to address because it usually travels across multiple urban jurisdictional boundaries with varying transportation directions at different times, therefore posing a challenge for urban managers to figure out who is potentially polluting whose air and how PM pollution in adjacent cities interact with each other. This study proposes a statistical analysis framework for characterizing directional interaction relationships between PM pollution in cities. Compared with chemical transport models (CTMs) and chemical composition analysis method, the proposed framework requires less data and less time, and is easy to implement and able to reveal directional interaction relationships between PM pollution in multiple cities in a quick and computationally inexpensive way. In order to demonstrate the application of the framework, this study applied the framework to analyze the interaction relationships between PM2.5 pollution in 29 cities in East China, South Korea and Japan using one year of hourly PM2.5 measurement data in 2018. The results show that the framework is able to reveal the significant multilateral and directional interaction relationships between PM2.5 pollution in the 29 cities in Northeast Asia. The analysis results of the case study show that the PM2.5 pollution in China, South Korea and Japan are linked with each other, and the interaction relationships are mutual. This study further evaluated the framework's validity by comparing the analysis results against the wind vector data, the back trajectory data, as well as the results extracted from existing literature that adopted CTMs to study the interaction relationships between PM pollution in Northeast Asia. The comparisons show that the analysis results produced by the framework are consistent with the wind vector data, the back trajectory data as well as the results using CTMs. The proposed framework provides an alternative for exploring transportation pathways and patterns of transboundary PM pollution between cities when CTMs and chemical composition analysis would be too demanding or impossible to implement. |
first_indexed | 2024-04-14T04:51:44Z |
format | Article |
id | doaj.art-ff9801e3176b4242bfedfce6903b8be8 |
institution | Directory Open Access Journal |
issn | 2296-2565 |
language | English |
last_indexed | 2024-04-14T04:51:44Z |
publishDate | 2022-05-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Public Health |
spelling | doaj.art-ff9801e3176b4242bfedfce6903b8be82022-12-22T02:11:16ZengFrontiers Media S.A.Frontiers in Public Health2296-25652022-05-011010.3389/fpubh.2022.875924875924A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and JapanJianzheng Liu0Hung Chak Ho1Hung Chak Ho2School of Public Affairs, Xiamen University, Xiamen, ChinaDepartment of Anaesthesiology, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, ChinaDepartment of Urban Planning and Design, The University of Hong Kong, Hong Kong, Hong Kong SAR, ChinaTransboundary particulate matter (PM) pollution has become an increasingly significant public health issue around the world due to its impacts on human health. However, transboundary PM pollution is difficult to address because it usually travels across multiple urban jurisdictional boundaries with varying transportation directions at different times, therefore posing a challenge for urban managers to figure out who is potentially polluting whose air and how PM pollution in adjacent cities interact with each other. This study proposes a statistical analysis framework for characterizing directional interaction relationships between PM pollution in cities. Compared with chemical transport models (CTMs) and chemical composition analysis method, the proposed framework requires less data and less time, and is easy to implement and able to reveal directional interaction relationships between PM pollution in multiple cities in a quick and computationally inexpensive way. In order to demonstrate the application of the framework, this study applied the framework to analyze the interaction relationships between PM2.5 pollution in 29 cities in East China, South Korea and Japan using one year of hourly PM2.5 measurement data in 2018. The results show that the framework is able to reveal the significant multilateral and directional interaction relationships between PM2.5 pollution in the 29 cities in Northeast Asia. The analysis results of the case study show that the PM2.5 pollution in China, South Korea and Japan are linked with each other, and the interaction relationships are mutual. This study further evaluated the framework's validity by comparing the analysis results against the wind vector data, the back trajectory data, as well as the results extracted from existing literature that adopted CTMs to study the interaction relationships between PM pollution in Northeast Asia. The comparisons show that the analysis results produced by the framework are consistent with the wind vector data, the back trajectory data as well as the results using CTMs. The proposed framework provides an alternative for exploring transportation pathways and patterns of transboundary PM pollution between cities when CTMs and chemical composition analysis would be too demanding or impossible to implement.https://www.frontiersin.org/articles/10.3389/fpubh.2022.875924/fulltransboundary air pollutionparticulate matterinteraction relationshipChinaSouth KoreaJapan |
spellingShingle | Jianzheng Liu Hung Chak Ho Hung Chak Ho A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan Frontiers in Public Health transboundary air pollution particulate matter interaction relationship China South Korea Japan |
title | A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan |
title_full | A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan |
title_fullStr | A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan |
title_full_unstemmed | A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan |
title_short | A Framework for Characterizing the Multilateral and Directional Interaction Relationships Between PM Pollution at City Scale: A Case Study of 29 Cities in East China, South Korea and Japan |
title_sort | framework for characterizing the multilateral and directional interaction relationships between pm pollution at city scale a case study of 29 cities in east china south korea and japan |
topic | transboundary air pollution particulate matter interaction relationship China South Korea Japan |
url | https://www.frontiersin.org/articles/10.3389/fpubh.2022.875924/full |
work_keys_str_mv | AT jianzhengliu aframeworkforcharacterizingthemultilateralanddirectionalinteractionrelationshipsbetweenpmpollutionatcityscaleacasestudyof29citiesineastchinasouthkoreaandjapan AT hungchakho aframeworkforcharacterizingthemultilateralanddirectionalinteractionrelationshipsbetweenpmpollutionatcityscaleacasestudyof29citiesineastchinasouthkoreaandjapan AT hungchakho aframeworkforcharacterizingthemultilateralanddirectionalinteractionrelationshipsbetweenpmpollutionatcityscaleacasestudyof29citiesineastchinasouthkoreaandjapan AT jianzhengliu frameworkforcharacterizingthemultilateralanddirectionalinteractionrelationshipsbetweenpmpollutionatcityscaleacasestudyof29citiesineastchinasouthkoreaandjapan AT hungchakho frameworkforcharacterizingthemultilateralanddirectionalinteractionrelationshipsbetweenpmpollutionatcityscaleacasestudyof29citiesineastchinasouthkoreaandjapan AT hungchakho frameworkforcharacterizingthemultilateralanddirectionalinteractionrelationshipsbetweenpmpollutionatcityscaleacasestudyof29citiesineastchinasouthkoreaandjapan |