Performance Optimization of a Thermoelectric Device by Using a Shear Thinning Nanofluid and Rotating Cylinder in a Cavity with Ventilation Ports

The combined effects of using a rotating cylinder and shear thinning nanofluid on the performance improvements of a thermoelectric generator (TEG)-installed cavity with multiple ventilation ports are numerically assessed. An optimization algorithm is used to find the best location, rotational speed...

Full description

Bibliographic Details
Main Authors: Nidhal Ben Khedher, Fatih Selimefendigil, Lioua Kolsi, Walid Aich, Lotfi Ben Said, Ismail Boukholda
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/7/1075
Description
Summary:The combined effects of using a rotating cylinder and shear thinning nanofluid on the performance improvements of a thermoelectric generator (TEG)-installed cavity with multiple ventilation ports are numerically assessed. An optimization algorithm is used to find the best location, rotational speed and size of the cylinder to deliver the highest power generation of the TEG. The power generation features with varying Rew are different for the first nanofluid (NF1) when compared to the second one (NF2). The power rises with higher Rew when NF1 is used, and up to 49% enhancement is obtained. The output power variation between nanofluids NF1 and NF2 is the highest at Rew = 0, which is obtained as 68.5%. When the cylinder location is varied, the change in the output power becomes 61% when NF2 is used. The optimum case has 11.5%- and 161%-higher generated power when compared with the no-object case with NF1 and NF2. The computational effort of using the high-fidelity coupled system is reduced when optimization is considered.
ISSN:2227-7390