A large size-selective DNA nanopore with sensing applications

Artificial nanopores can perform selective gating of molecules analogous to transmembrane proteins. Here, the authors design a DNA origami pore with a controllable lid for size-selective gating and translocation of macromolecules and evaluate its biosensing properties by single particle assay.

Bibliographic Details
Main Authors: Rasmus P. Thomsen, Mette Galsgaard Malle, Anders Hauge Okholm, Swati Krishnan, Søren S.-R. Bohr, Rasmus Schøler Sørensen, Oliver Ries, Stefan Vogel, Friedrich C. Simmel, Nikos S. Hatzakis, Jørgen Kjems
Format: Article
Language:English
Published: Nature Portfolio 2019-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-13284-1
Description
Summary:Artificial nanopores can perform selective gating of molecules analogous to transmembrane proteins. Here, the authors design a DNA origami pore with a controllable lid for size-selective gating and translocation of macromolecules and evaluate its biosensing properties by single particle assay.
ISSN:2041-1723