Cryogel System Based on Poly(vinyl alcohol)/Poly(ethylene brassylate-co-squaric acid) Platform with Dual Bioactive Activity

The inability to meet and ensure as many requirements as possible is fully justified by the continuous interest in obtaining new multifunctional materials. A new cryogel system based on poly(vinyl alcohol) (PVA) and poly(ethylene brassylate-co-squaric acid) (PEBSA) obtained by repeated freeze–thaw p...

Full description

Bibliographic Details
Main Authors: Bianca-Elena-Beatrice Crețu, Alina Gabriela Rusu, Alina Ghilan, Irina Rosca, Loredana Elena Nita, Aurica P. Chiriac
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/9/3/174
Description
Summary:The inability to meet and ensure as many requirements as possible is fully justified by the continuous interest in obtaining new multifunctional materials. A new cryogel system based on poly(vinyl alcohol) (PVA) and poly(ethylene brassylate-co-squaric acid) (PEBSA) obtained by repeated freeze–thaw processes was previously reported and used for the incorporation of an antibacterial essential oil—namely, thymol (Thy). Furthermore, the present study aims to confer antioxidant properties to the PVA/PEBSA_Thy system by encapsulating α-tocopherol (α-Tcp), targeting a double therapeutic effect due to the presence of both bioactive compounds. The amphiphilic nature of the PEBSA copolymer allowed for the encapsulation of both Thy and α-Tcp, via an in situ entrapment method. The new PVA/PEBSA_Thy_α-Tcp systems were characterized in terms of their influence on the composition, network morphology and release profiles, as well as their antimicrobial and antioxidant properties. The study underlined the cumulative antioxidant efficiency of Thy and α-Tcp, which in combination with the PEBSA copolymer have a synergistic effect (97.1%). We believe that the convenient and simple strategy offered in this study increases applicability for these new PVA/PEBSA_Thy_α-Tcp cryogel systems.
ISSN:2310-2861