Summary: | Abstract This research addresses the issue of State of Charge (SOC) prediction for electric vehicle batteries by employing a dynamic Kalman neural network model. The model is optimized using a Genetic algorithm to adjust the neural network weights. Additionally, a strategy involving support vector machines for model optimization is proposed. This strategy involves preprocessing the data, selecting appropriate kernel functions for training, and merging prediction results to enhance the stability of the model. Results indicated that the Dynamic Genetic Kalman Neural Network (DGKNN) model achieved the minimum prediction error percentage of only 0.1529% when the correction coefficient was set to 0.7. The DGKNN model consistently exhibited the lowest error percentage, average absolute error, mean square error, and root mean square error when handling small, medium, and large datasets. For instance, in the small dataset, the error percentage was only 0.1518, and the root mean square error was only 0.0604. The research findings demonstrated that the proposed model exhibited high real-time accuracy in predicting battery SOC, enabling real-time monitoring of battery operating parameters. The method proposed in this study can accurately predict the state of battery charge, extend the life of battery packs, and improve the performance of electric vehicles. It has important significance for promoting the development of the electric vehicle industry.
|