Depth-dependent Photodegradation of Marine Dissolved Organic Matter
Marine dissolved organic matter (DOM) in surface and deep waters of the eastern Atlantic Ocean and Sargasso Sea was analyzed by excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC). Photo-degradation with semi-continuous monitoring of EEMs and absorbance...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2015-09-01
|
Series: | Frontiers in Marine Science |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fmars.2015.00066/full |
_version_ | 1819083552946388992 |
---|---|
author | Stephen Andrew Timko Anastasia eMaydanov Sandra L Pittelli Maureen H Conte Maureen H Conte William J Cooper Boris P Koch Boris P Koch Philippe eSchmitt-Kopplin Philippe eSchmitt-Kopplin Michael eGonsior |
author_facet | Stephen Andrew Timko Anastasia eMaydanov Sandra L Pittelli Maureen H Conte Maureen H Conte William J Cooper Boris P Koch Boris P Koch Philippe eSchmitt-Kopplin Philippe eSchmitt-Kopplin Michael eGonsior |
author_sort | Stephen Andrew Timko |
collection | DOAJ |
description | Marine dissolved organic matter (DOM) in surface and deep waters of the eastern Atlantic Ocean and Sargasso Sea was analyzed by excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC). Photo-degradation with semi-continuous monitoring of EEMs and absorbance spectra was used to measure the photo-degradation kinetics and changes of the PARAFAC components in a depth profile of DOM at the Bermuda Atlantic Time Series (BATS) station in the Sargasso Sea. A five component model was fit to the EEMs, which included traditional terrestrial-like, marine-like, and protein-like components. Terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in surface waters, which may account for its prevalence in marine systems. Surface waters were depleted in photo-labile components while protein-like fluorescent components were enriched, consistent with previous studies. Ultra-high resolution mass spectrometry detected unique aliphatic compounds in the surface waters at the BATS site, which may be photo-produced or photo-stable. Principle component and canonical analysis showed strong correlations between relative contributions of unsaturated/aromatic molecular formulas and depth, with aliphatic compounds more prevalent in surface waters and aromatic compounds in deep waters. Strong correlations were seen between these aromatic compounds and humic-like fluorescent components. The rapid photo-degradation of the deep-sea fluorescent DOM in addition to the surface water relative depletion of aromatic compounds suggests that deep-sea fluorescent DOM is very unlikely to survive overturning circulation. |
first_indexed | 2024-12-21T20:34:23Z |
format | Article |
id | doaj.art-ffe8c3b65f1d46e0a53f6b0f2365d4dd |
institution | Directory Open Access Journal |
issn | 2296-7745 |
language | English |
last_indexed | 2024-12-21T20:34:23Z |
publishDate | 2015-09-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Marine Science |
spelling | doaj.art-ffe8c3b65f1d46e0a53f6b0f2365d4dd2022-12-21T18:51:08ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452015-09-01210.3389/fmars.2015.00066159757Depth-dependent Photodegradation of Marine Dissolved Organic MatterStephen Andrew Timko0Anastasia eMaydanov1Sandra L Pittelli2Maureen H Conte3Maureen H Conte4William J Cooper5Boris P Koch6Boris P Koch7Philippe eSchmitt-Kopplin8Philippe eSchmitt-Kopplin9Michael eGonsior10University of California, IrvineNortheastern UniversityGeorgia Institute of TechnologyMBLBermuda Institute of Ocean SciencesUniversity of California, IrvineAlfred-Wegener-Institut Helmholtz Zentrum für Polar- und MeeresforschungUniversity of Applied SciencesHelmholtz Zentrum MünchenTechnische Universität MünchenUniversity of Maryland Center for Environmental ScienceMarine dissolved organic matter (DOM) in surface and deep waters of the eastern Atlantic Ocean and Sargasso Sea was analyzed by excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC). Photo-degradation with semi-continuous monitoring of EEMs and absorbance spectra was used to measure the photo-degradation kinetics and changes of the PARAFAC components in a depth profile of DOM at the Bermuda Atlantic Time Series (BATS) station in the Sargasso Sea. A five component model was fit to the EEMs, which included traditional terrestrial-like, marine-like, and protein-like components. Terrestrial-like components showed the expected high photo-reactivity, but surprisingly, the traditional marine-like peak showed slight photo-production in surface waters, which may account for its prevalence in marine systems. Surface waters were depleted in photo-labile components while protein-like fluorescent components were enriched, consistent with previous studies. Ultra-high resolution mass spectrometry detected unique aliphatic compounds in the surface waters at the BATS site, which may be photo-produced or photo-stable. Principle component and canonical analysis showed strong correlations between relative contributions of unsaturated/aromatic molecular formulas and depth, with aliphatic compounds more prevalent in surface waters and aromatic compounds in deep waters. Strong correlations were seen between these aromatic compounds and humic-like fluorescent components. The rapid photo-degradation of the deep-sea fluorescent DOM in addition to the surface water relative depletion of aromatic compounds suggests that deep-sea fluorescent DOM is very unlikely to survive overturning circulation.http://journal.frontiersin.org/Journal/10.3389/fmars.2015.00066/fullSargasso SeaphotodegradationparafacFluorescence spectroscopyCDOMultrahigh resolution mass spectrometry |
spellingShingle | Stephen Andrew Timko Anastasia eMaydanov Sandra L Pittelli Maureen H Conte Maureen H Conte William J Cooper Boris P Koch Boris P Koch Philippe eSchmitt-Kopplin Philippe eSchmitt-Kopplin Michael eGonsior Depth-dependent Photodegradation of Marine Dissolved Organic Matter Frontiers in Marine Science Sargasso Sea photodegradation parafac Fluorescence spectroscopy CDOM ultrahigh resolution mass spectrometry |
title | Depth-dependent Photodegradation of Marine Dissolved Organic Matter |
title_full | Depth-dependent Photodegradation of Marine Dissolved Organic Matter |
title_fullStr | Depth-dependent Photodegradation of Marine Dissolved Organic Matter |
title_full_unstemmed | Depth-dependent Photodegradation of Marine Dissolved Organic Matter |
title_short | Depth-dependent Photodegradation of Marine Dissolved Organic Matter |
title_sort | depth dependent photodegradation of marine dissolved organic matter |
topic | Sargasso Sea photodegradation parafac Fluorescence spectroscopy CDOM ultrahigh resolution mass spectrometry |
url | http://journal.frontiersin.org/Journal/10.3389/fmars.2015.00066/full |
work_keys_str_mv | AT stephenandrewtimko depthdependentphotodegradationofmarinedissolvedorganicmatter AT anastasiaemaydanov depthdependentphotodegradationofmarinedissolvedorganicmatter AT sandralpittelli depthdependentphotodegradationofmarinedissolvedorganicmatter AT maureenhconte depthdependentphotodegradationofmarinedissolvedorganicmatter AT maureenhconte depthdependentphotodegradationofmarinedissolvedorganicmatter AT williamjcooper depthdependentphotodegradationofmarinedissolvedorganicmatter AT borispkoch depthdependentphotodegradationofmarinedissolvedorganicmatter AT borispkoch depthdependentphotodegradationofmarinedissolvedorganicmatter AT philippeeschmittkopplin depthdependentphotodegradationofmarinedissolvedorganicmatter AT philippeeschmittkopplin depthdependentphotodegradationofmarinedissolvedorganicmatter AT michaelegonsior depthdependentphotodegradationofmarinedissolvedorganicmatter |