Typical and atypical enteropathogenic Escherichia coli bacterial translocation associated with tissue hypoperfusion in rats
Although enteropathogenic Escherichia coli (EPEC) are well-recognized diarrheal agents, their ability to translocate and cause extraintestinal alterations is not known. We investigated whether a typical EPEC (tEPEC) and an atypical EPEC (aEPEC) strain translocate and cause microcirculation injury un...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Associação Brasileira de Divulgação Científica
2011-10-01
|
Series: | Brazilian Journal of Medical and Biological Research |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2011001000007 |
Summary: | Although enteropathogenic Escherichia coli (EPEC) are well-recognized diarrheal agents, their ability to translocate and cause extraintestinal alterations is not known. We investigated whether a typical EPEC (tEPEC) and an atypical EPEC (aEPEC) strain translocate and cause microcirculation injury under conditions of intestinal bacterial overgrowth. Bacterial translocation (BT) was induced in female Wistar-EPM rats (200-250 g) by oroduodenal catheterization and inoculation of 10 mL 10(10) colony forming unit (CFU)/mL, with the bacteria being confined between the duodenum and ileum with ligatures. After 2 h, mesenteric lymph nodes (MLN), liver and spleen were cultured for translocated bacteria and BT-related microcirculation changes were monitored in mesenteric and abdominal organs by intravital microscopy and laser Doppler flow, respectively. tEPEC (N = 11) and aEPEC (N = 11) were recovered from MLN (100%), spleen (36.4 and 45.5%), and liver (45.5 and 72.7%) of the animals, respectively. Recovery of the positive control E. coli R-6 (N = 6) was 100% for all compartments. Bacteria were not recovered from extraintestinal sites of controls inoculated with non-pathogenic E. coli strains HB101 (N = 6) and HS (N = 10), or saline. Mesenteric microcirculation injuries were detected with both EPEC strains, but only aEPEC was similar to E. coli R-6 with regard to systemic tissue hypoperfusion. In conclusion, overgrowth of certain aEPEC strains may lead to BT and impairment of the microcirculation in systemic organs. |
---|---|
ISSN: | 0100-879X 1414-431X |