The Role of Steps on Silver Nanoparticles in Electrocatalytic Oxygen Reduction

Hydrogen fuel cell technology is an essential component of a green economy. However, it is limited in practicality and affordability by the oxygen reduction reaction (ORR). Nanoscale silver particles have been proposed as a cost-effective solution to this problem. However, previous computational stu...

Full description

Bibliographic Details
Main Authors: Jack Jon Hinsch, Junxian Liu, Jessica Jein White, Yun Wang
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/12/6/576
Description
Summary:Hydrogen fuel cell technology is an essential component of a green economy. However, it is limited in practicality and affordability by the oxygen reduction reaction (ORR). Nanoscale silver particles have been proposed as a cost-effective solution to this problem. However, previous computational studies focused on clean and flat surfaces. High-index surfaces can be used to model active steps presented in nanoparticles. Here, we used the stable stepped Ag(322) surface as a model to understand the ORR performance of steps on Ag nanoparticles. Our density functional theory (DFT) results demonstrate a small dissociation energy barrier for O<sub>2</sub> molecules on the Ag(322) surface, which can be ascribed to the existence of low-coordination number surface atoms. Consequently, the adsorption of OOH* led to the associative pathway becoming ineffective. Alternatively, the unusual dissociative mechanism is energetically favored on Ag(322) for ORR. Our findings reveal the importance of the coordination numbers of active sites for catalytic performance, which can further guide electrocatalysts’ design.
ISSN:2073-4344