Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency

This paper addresses the problem of semantic part parsing (segmentation) of cars, i.e.assigning every pixel within the car to one of the parts (e.g.body, window, lights, license plates and wheels). We formulate this as a landmark identification problem, where a set of landmarks specifies the boundar...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Lu, Wenhao, Lian, Xiaochen, Yuille, Alan L.
Định dạng: Technical Report
Ngôn ngữ:en_US
Được phát hành: Center for Brains, Minds and Machines (CBMM), arXiv 2015
Những chủ đề:
Truy cập trực tuyến:http://hdl.handle.net/1721.1/100182
Miêu tả
Tóm tắt:This paper addresses the problem of semantic part parsing (segmentation) of cars, i.e.assigning every pixel within the car to one of the parts (e.g.body, window, lights, license plates and wheels). We formulate this as a landmark identification problem, where a set of landmarks specifies the boundaries of the parts. A novel mixture of graphical models is proposed, which dynamically couples the landmarks to a hierarchy of segments. When modeling pairwise relation between landmarks, this coupling enables our model to exploit the local image contents in addition to spatial deformation, an aspect that most existing graphical models ignore. In particular, our model enforces appearance consistency between segments within the same part. Parsing the car, including finding the optimal coupling between landmarks and segments in the hierarchy, is performed by dynamic programming. We evaluate our method on a subset of PASCAL VOC 2010 car images and on the car subset of 3D Object Category dataset (CAR3D). We show good results and, in particular, quantify the effectiveness of using the segment appearance consistency in terms of accuracy of part localization and segmentation.