Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors

We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual...

Full description

Bibliographic Details
Main Authors: Dalca, Adrian Vasile, Sridharan, Ramesh, Cloonan, Lisa, Fitzpatrick, Kaitlin M., Kanakis, Allison, Furie, Karen L., Rosand, Jonathan, Wu, Ona, Sabuncu, Mert, Rost, Natalia S., Golland, Polina
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Springer-Verlag 2015
Online Access:http://hdl.handle.net/1721.1/100234
https://orcid.org/0000-0002-8422-0136
https://orcid.org/0000-0003-2516-731X
_version_ 1826212167182974976
author Dalca, Adrian Vasile
Sridharan, Ramesh
Cloonan, Lisa
Fitzpatrick, Kaitlin M.
Kanakis, Allison
Furie, Karen L.
Rosand, Jonathan
Wu, Ona
Sabuncu, Mert
Rost, Natalia S.
Golland, Polina
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Dalca, Adrian Vasile
Sridharan, Ramesh
Cloonan, Lisa
Fitzpatrick, Kaitlin M.
Kanakis, Allison
Furie, Karen L.
Rosand, Jonathan
Wu, Ona
Sabuncu, Mert
Rost, Natalia S.
Golland, Polina
author_sort Dalca, Adrian Vasile
collection MIT
description We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort.
first_indexed 2024-09-23T15:17:06Z
format Article
id mit-1721.1/100234
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T15:17:06Z
publishDate 2015
publisher Springer-Verlag
record_format dspace
spelling mit-1721.1/1002342019-05-17T07:51:55Z Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors Dalca, Adrian Vasile Sridharan, Ramesh Cloonan, Lisa Fitzpatrick, Kaitlin M. Kanakis, Allison Furie, Karen L. Rosand, Jonathan Wu, Ona Sabuncu, Mert Rost, Natalia S. Golland, Polina Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Dalca, Adrian Vasile Sridharan, Ramesh Golland, Polina We propose and demonstrate an inference algorithm for the automatic segmentation of cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating pathologies is important for understanding the underlying mechanisms and clinical outcomes of cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of stroke that include thousands of patients. Unlike normal brain tissues and structures, the location and shape of the lesions vary across patients, presenting serious challenges for prior-driven segmentation. Our generative model captures spatial patterns and intensity properties associated with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting segmentation algorithm on clinical images of a stroke patient cohort. Natural Sciences and Engineering Research Council of Canada (Canada Graduate Scholarships-Doctoral) National Science Foundation (U.S.). Graduate Research Fellowship National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.) 1K25EB013649-01) BrightFocus Foundation (Grant AHAF-A201233) National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/Neuroimaging Analysis Center (U.S.) P41EB015902) National Institutes of Health (U.S.) (National Institute for Biomedical Imaging and Bioengineering (U.S.)/National Alliance for Medical Image Computing (U.S.) U54-EB005149) National Institutes of Health (U.S.) (National Institute of Neurological Disorders and Stroke (U.S.) NS082285) National Institutes of Health (U.S.) (National Institute of Neurological Disorders and Stroke (U.S.) K23NS064052) National Institutes of Health (U.S.) (National Institute of Neurological Disorders and Stroke (U.S.) U01NS06920) American Stroke Association (Bugher Foundation Centers for Stroke Prevention Research) 2015-12-14T03:28:40Z 2015-12-14T03:28:40Z 2014 Article http://purl.org/eprint/type/JournalArticle 978-3-319-10469-0 978-3-319-10470-6 0302-9743 1611-3349 http://hdl.handle.net/1721.1/100234 Dalca, Adrian Vasile, Ramesh Sridharan, Lisa Cloonan, Kaitlin M. Fitzpatrick, Allison Kanakis, Karen L. Furie, Jonathan Rosand, et al. “Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors.” Lecture Notes in Computer Science (2014): 773–780. OPEN_ACCESS_POLICY https://orcid.org/0000-0002-8422-0136 https://orcid.org/0000-0003-2516-731X en_US http://dx.doi.org/10.1007/978-3-319-10470-6_96 Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Springer-Verlag PMC
spellingShingle Dalca, Adrian Vasile
Sridharan, Ramesh
Cloonan, Lisa
Fitzpatrick, Kaitlin M.
Kanakis, Allison
Furie, Karen L.
Rosand, Jonathan
Wu, Ona
Sabuncu, Mert
Rost, Natalia S.
Golland, Polina
Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_full Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_fullStr Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_full_unstemmed Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_short Segmentation of Cerebrovascular Pathologies in Stroke Patients with Spatial and Shape Priors
title_sort segmentation of cerebrovascular pathologies in stroke patients with spatial and shape priors
url http://hdl.handle.net/1721.1/100234
https://orcid.org/0000-0002-8422-0136
https://orcid.org/0000-0003-2516-731X
work_keys_str_mv AT dalcaadrianvasile segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT sridharanramesh segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT cloonanlisa segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT fitzpatrickkaitlinm segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT kanakisallison segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT furiekarenl segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT rosandjonathan segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT wuona segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT sabuncumert segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT rostnatalias segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors
AT gollandpolina segmentationofcerebrovascularpathologiesinstrokepatientswithspatialandshapepriors