Detecting Kinase Activities from Single Cell Lysate Using Concentration-Enhanced Mobility Shift Assay

Electrokinetic preconcentration coupled with mobility shift assays can give rise to very high detection sensitivities. We describe a microfluidic device that utilizes this principle to detect cellular kinase activities by simultaneously concentrating and separating substrate peptides with different...

Full description

Bibliographic Details
Main Authors: Cheow, Lih Feng, Sarkar, Aniruddh, Kolitz, Sarah, Han, Jongyoon, Lauffenburger, Douglas A.
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2015
Online Access:http://hdl.handle.net/1721.1/100245
https://orcid.org/0000-0001-7215-1439
Description
Summary:Electrokinetic preconcentration coupled with mobility shift assays can give rise to very high detection sensitivities. We describe a microfluidic device that utilizes this principle to detect cellular kinase activities by simultaneously concentrating and separating substrate peptides with different phosphorylation states. This platform is capable of reliably measuring kinase activities of single adherent cells cultured in nanoliter volume microwells. We also describe a novel method utilizing spacer peptides that significantly increase separation resolution while maintaining high concentration factors in this device. Thus, multiplexed kinase measurements can be implemented with single cell sensitivity. Multiple kinase activity profiling from single cell lysate could potentially allow us to study heterogeneous activation of signaling pathways that can lead to multiple cell fates.