A Data-Driven Regularization Model for Stereo and Flow
Data-driven techniques can reliably build semantic correspondence among images. In this paper, we present a new regularization model for stereo or flow through transferring the shape information of the disparity or flow from semantically matched patches in the training database. Compared to previous...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2015
|
Online Access: | http://hdl.handle.net/1721.1/100257 https://orcid.org/0000-0002-2329-5484 https://orcid.org/0000-0002-2231-7995 |