UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS
The ability to predict future states of the environment is a central pillar of intelligence. At its core, effective prediction requires an internal model of the world and an understanding of the rules by which the world changes. Here, we explore the internal models developed by deep neural networks...
Main Authors: | , , |
---|---|
Format: | Technical Report |
Language: | en_US |
Published: |
Center for Brains, Minds and Machines (CBMM), arXiv
2015
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/100275 |
_version_ | 1826199342335131648 |
---|---|
author | Lotter, William Kreiman, Gabriel Cox, David |
author_facet | Lotter, William Kreiman, Gabriel Cox, David |
author_sort | Lotter, William |
collection | MIT |
description | The ability to predict future states of the environment is a central pillar of intelligence. At its core, effective prediction requires an internal model of the world and an understanding of the rules by which the world changes. Here, we explore the internal models developed by deep neural networks trained using a loss based on predicting future frames in synthetic video sequences, using an Encoder-Recurrent-Decoder framework (Fragkiadaki et al., 2015). We first show that this architecture can achieve excellent performance in visual sequence prediction tasks, including state-of-the-art performance in a standard “bouncing balls” dataset (Sutskever et al., 2009). We then train on clips of out-of-the-plane rotations of computer-generated faces, using both mean-squared error and a generative adversarial loss (Goodfellow et al., 2014), extending the latter to a recurrent, conditional setting. Despite being trained end-to-end to predict only pixel-level information, our Predictive Generative Networks learn a representation of the latent variables of the underlying generative process. Importantly, we find that this representation is naturally tolerant to object transformations, and generalizes well to new tasks, such as classification of static images. Similar models trained solely with a reconstruction loss fail to generalize as effectively. We argue that prediction can serve as a powerful unsupervised loss for learning rich internal representations of high-level object features. |
first_indexed | 2024-09-23T11:18:40Z |
format | Technical Report |
id | mit-1721.1/100275 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T11:18:40Z |
publishDate | 2015 |
publisher | Center for Brains, Minds and Machines (CBMM), arXiv |
record_format | dspace |
spelling | mit-1721.1/1002752019-04-11T08:14:57Z UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS Lotter, William Kreiman, Gabriel Cox, David Neural Networks Encoder-Recurrent-Decoder framework Vision Predictive Generative Networks Neuroscience The ability to predict future states of the environment is a central pillar of intelligence. At its core, effective prediction requires an internal model of the world and an understanding of the rules by which the world changes. Here, we explore the internal models developed by deep neural networks trained using a loss based on predicting future frames in synthetic video sequences, using an Encoder-Recurrent-Decoder framework (Fragkiadaki et al., 2015). We first show that this architecture can achieve excellent performance in visual sequence prediction tasks, including state-of-the-art performance in a standard “bouncing balls” dataset (Sutskever et al., 2009). We then train on clips of out-of-the-plane rotations of computer-generated faces, using both mean-squared error and a generative adversarial loss (Goodfellow et al., 2014), extending the latter to a recurrent, conditional setting. Despite being trained end-to-end to predict only pixel-level information, our Predictive Generative Networks learn a representation of the latent variables of the underlying generative process. Importantly, we find that this representation is naturally tolerant to object transformations, and generalizes well to new tasks, such as classification of static images. Similar models trained solely with a reconstruction loss fail to generalize as effectively. We argue that prediction can serve as a powerful unsupervised loss for learning rich internal representations of high-level object features. This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF – 1231216. 2015-12-15T20:14:37Z 2015-12-15T20:14:37Z 2015-12-15 Technical Report Working Paper Other http://hdl.handle.net/1721.1/100275 arXiv:1511.06380v1 en_US CBMM Memo Series;040 Attribution-NonCommercial 3.0 United States http://creativecommons.org/licenses/by-nc/3.0/us/ application/pdf Center for Brains, Minds and Machines (CBMM), arXiv |
spellingShingle | Neural Networks Encoder-Recurrent-Decoder framework Vision Predictive Generative Networks Neuroscience Lotter, William Kreiman, Gabriel Cox, David UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS |
title | UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS |
title_full | UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS |
title_fullStr | UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS |
title_full_unstemmed | UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS |
title_short | UNSUPERVISED LEARNING OF VISUAL STRUCTURE USING PREDICTIVE GENERATIVE NETWORKS |
title_sort | unsupervised learning of visual structure using predictive generative networks |
topic | Neural Networks Encoder-Recurrent-Decoder framework Vision Predictive Generative Networks Neuroscience |
url | http://hdl.handle.net/1721.1/100275 |
work_keys_str_mv | AT lotterwilliam unsupervisedlearningofvisualstructureusingpredictivegenerativenetworks AT kreimangabriel unsupervisedlearningofvisualstructureusingpredictivegenerativenetworks AT coxdavid unsupervisedlearningofvisualstructureusingpredictivegenerativenetworks |