Online Stochastic Matching: New Algorithms with Better Bounds

We consider variants of the online stochastic bipartite matching problem motivated by Internet advertising display applications, as introduced in Feldman et al. [Feldman J, Mehta A, Mirrokni VS, Muthukrishnan S (2009) Online stochastic matching: Beating 1 − 1/e. FOCS '09: Proc. 50th Annual IEEE...

Full description

Bibliographic Details
Main Authors: Jaillet, Patrick, Lu, Xin
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:en_US
Published: Institute for Operations Research and the Management Sciences (INFORMS) 2015
Online Access:http://hdl.handle.net/1721.1/100449
https://orcid.org/0000-0002-8585-6566
_version_ 1811097489612210176
author Jaillet, Patrick
Lu, Xin
author2 Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
author_facet Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Jaillet, Patrick
Lu, Xin
author_sort Jaillet, Patrick
collection MIT
description We consider variants of the online stochastic bipartite matching problem motivated by Internet advertising display applications, as introduced in Feldman et al. [Feldman J, Mehta A, Mirrokni VS, Muthukrishnan S (2009) Online stochastic matching: Beating 1 − 1/e. FOCS '09: Proc. 50th Annual IEEE Sympos. Foundations Comput. Sci. (IEEE, Washington, DC), 117–126]. In this setting, advertisers express specific interests into requests for impressions of different types. Advertisers are fixed and known in advance, whereas requests for impressions come online. The task is to assign each request to an interested advertiser (or to discard it) immediately upon its arrival. In the adversarial online model, the ranking algorithm of Karp et al. [Karp RM, Vazirani UV, Varirani VV (1990) An optimal algorithm for online bipartite matching. STOC '90: Proc. 22nd Annual ACM Sympos. Theory Comput. (ACM, New York), 352–358] provides a best possible randomized algorithm with competitive ratio 1 − 1/e ≈ 0.632. In the stochastic i.i.d. model, when requests are drawn repeatedly and independently from a known probability distribution over the different impression types, Feldman et al. [Feldman J, Mehta A, Mirrokni VS, Muthukrishnan S (2009) Online stochastic matching: Beating 1 − 1/e. FOCS '09: Proc. 50th Annual IEEE Sympos. Foundations Comput. Sci. (IEEE, Washington, DC), 117–126] prove that one can do better than 1 − 1/e. Under the restriction that the expected number of request of each impression type is an integer, they provide a 0.670-competitive algorithm, later improved by Bahmani and Kapralov [Bahmani B, Kapralov M (2010) Improved bounds for online stochastic matching. ESA '10: Proc. 22nd Annual Eur. Sympos. Algorithms (Springer-Verlag, Berlin, Heidelberg), 170–181] to 0.699 and by Manshadi et al. [Manshadi V, Gharan SO, Saberi A (2012) Online stochastic matching: Online actions based on offline statistics. Math. Oper. Res. 37(4):559–573] to 0.705. Without this integrality restriction, Manshadi et al. are able to provide a 0.702-competitive algorithm. In this paper we consider a general class of online algorithms for the i.i.d. model that improve on all these bounds and that use computationally efficient offline procedures (based on the solution of simple linear programs of maximum flow types). Under the integrality restriction on the expected number of impression types, we get a 1 − 2e[superscript −2](≈0.729)-competitive algorithm. Without this restriction, we get a 0.706-competitive algorithm. Our techniques can also be applied to other related problems such as the online stochastic vertex-weighted bipartite matching problem as defined in Aggarwal et al. [Aggarwal G, Goel G, Karande C, Mehta A (2011) Online vertex-weighted bipartite matching and single-bid budgeted allocations. SODA '11: Proc. 22nd Annual ACM-SIAM Sympos. Discrete Algorithms (SIAM, Philadelphia), 1253–1264]. For this problem, we obtain a 0.725-competitive algorithm under the stochastic i.i.d. model with integral arrival rate. Finally, we show the validity of all our results under a Poisson arrival model, removing the need to assume that the total number of arrivals is fixed and known in advance, as is required for the analysis of the stochastic i.i.d. models described above.
first_indexed 2024-09-23T17:00:13Z
format Article
id mit-1721.1/100449
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T17:00:13Z
publishDate 2015
publisher Institute for Operations Research and the Management Sciences (INFORMS)
record_format dspace
spelling mit-1721.1/1004492022-09-29T23:02:13Z Online Stochastic Matching: New Algorithms with Better Bounds Jaillet, Patrick Lu, Xin Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology. Laboratory for Information and Decision Systems Massachusetts Institute of Technology. Operations Research Center Jaillet, Patrick Lu, Xin We consider variants of the online stochastic bipartite matching problem motivated by Internet advertising display applications, as introduced in Feldman et al. [Feldman J, Mehta A, Mirrokni VS, Muthukrishnan S (2009) Online stochastic matching: Beating 1 − 1/e. FOCS '09: Proc. 50th Annual IEEE Sympos. Foundations Comput. Sci. (IEEE, Washington, DC), 117–126]. In this setting, advertisers express specific interests into requests for impressions of different types. Advertisers are fixed and known in advance, whereas requests for impressions come online. The task is to assign each request to an interested advertiser (or to discard it) immediately upon its arrival. In the adversarial online model, the ranking algorithm of Karp et al. [Karp RM, Vazirani UV, Varirani VV (1990) An optimal algorithm for online bipartite matching. STOC '90: Proc. 22nd Annual ACM Sympos. Theory Comput. (ACM, New York), 352–358] provides a best possible randomized algorithm with competitive ratio 1 − 1/e ≈ 0.632. In the stochastic i.i.d. model, when requests are drawn repeatedly and independently from a known probability distribution over the different impression types, Feldman et al. [Feldman J, Mehta A, Mirrokni VS, Muthukrishnan S (2009) Online stochastic matching: Beating 1 − 1/e. FOCS '09: Proc. 50th Annual IEEE Sympos. Foundations Comput. Sci. (IEEE, Washington, DC), 117–126] prove that one can do better than 1 − 1/e. Under the restriction that the expected number of request of each impression type is an integer, they provide a 0.670-competitive algorithm, later improved by Bahmani and Kapralov [Bahmani B, Kapralov M (2010) Improved bounds for online stochastic matching. ESA '10: Proc. 22nd Annual Eur. Sympos. Algorithms (Springer-Verlag, Berlin, Heidelberg), 170–181] to 0.699 and by Manshadi et al. [Manshadi V, Gharan SO, Saberi A (2012) Online stochastic matching: Online actions based on offline statistics. Math. Oper. Res. 37(4):559–573] to 0.705. Without this integrality restriction, Manshadi et al. are able to provide a 0.702-competitive algorithm. In this paper we consider a general class of online algorithms for the i.i.d. model that improve on all these bounds and that use computationally efficient offline procedures (based on the solution of simple linear programs of maximum flow types). Under the integrality restriction on the expected number of impression types, we get a 1 − 2e[superscript −2](≈0.729)-competitive algorithm. Without this restriction, we get a 0.706-competitive algorithm. Our techniques can also be applied to other related problems such as the online stochastic vertex-weighted bipartite matching problem as defined in Aggarwal et al. [Aggarwal G, Goel G, Karande C, Mehta A (2011) Online vertex-weighted bipartite matching and single-bid budgeted allocations. SODA '11: Proc. 22nd Annual ACM-SIAM Sympos. Discrete Algorithms (SIAM, Philadelphia), 1253–1264]. For this problem, we obtain a 0.725-competitive algorithm under the stochastic i.i.d. model with integral arrival rate. Finally, we show the validity of all our results under a Poisson arrival model, removing the need to assume that the total number of arrivals is fixed and known in advance, as is required for the analysis of the stochastic i.i.d. models described above. National Science Foundation (U.S.) (Grant 1029603) United States. Office of Naval Research (Grant N00014-09-1-0326) United States. Office of Naval Research (Grant N00014-12-1-0033) 2015-12-21T14:35:28Z 2015-12-21T14:35:28Z 2013-09 2012-05 Article http://purl.org/eprint/type/JournalArticle 0364-765X 1526-5471 http://hdl.handle.net/1721.1/100449 Jaillet, Patrick, and Xin Lu. “Online Stochastic Matching: New Algorithms with Better Bounds.” Mathematics of OR 39, no. 3 (August 2014): 624–646. https://orcid.org/0000-0002-8585-6566 en_US http://dx.doi.org/10.1287/moor.2013.0621 Mathematics of Operations Research Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Institute for Operations Research and the Management Sciences (INFORMS) MIT web domain
spellingShingle Jaillet, Patrick
Lu, Xin
Online Stochastic Matching: New Algorithms with Better Bounds
title Online Stochastic Matching: New Algorithms with Better Bounds
title_full Online Stochastic Matching: New Algorithms with Better Bounds
title_fullStr Online Stochastic Matching: New Algorithms with Better Bounds
title_full_unstemmed Online Stochastic Matching: New Algorithms with Better Bounds
title_short Online Stochastic Matching: New Algorithms with Better Bounds
title_sort online stochastic matching new algorithms with better bounds
url http://hdl.handle.net/1721.1/100449
https://orcid.org/0000-0002-8585-6566
work_keys_str_mv AT jailletpatrick onlinestochasticmatchingnewalgorithmswithbetterbounds
AT luxin onlinestochasticmatchingnewalgorithmswithbetterbounds