Heuristic Search of Multiagent Influence Space
Multiagent planning under uncertainty has seen important progress in recent years. Two techniques, in particular, have substantially advanced efficiency and scalability of planning. Multiagent heuristic search gains traction by pruning large portions of the joint policy space deemed suboptimal by he...
Main Authors: | Witwicki, Stefan J., Oliehoek, Frans A., Kaelbling, Leslie P. |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Formato: | Artigo |
Idioma: | en_US |
Publicado em: |
Association for Computing Machinery (ACM)
2016
|
Acesso em linha: | http://hdl.handle.net/1721.1/100717 https://orcid.org/0000-0001-6054-7145 |
Registos relacionados
-
A Sufficient Statistic for Influence in Structured Multiagent Environments
Por: Oliehoek, Frans, et al.
Publicado em: (2022) -
Influence-Based Abstraction for Multiagent Systems
Por: Oliehoek, Frans A., et al.
Publicado em: (2014) -
Learning to rank for synthesizing planning heuristics
Por: Garrett, Caelan Reed, et al.
Publicado em: (2018) -
FFRob: An Efficient Heuristic for Task and Motion Planning
Por: Garrett, Caelan Reed, et al.
Publicado em: (2017) -
Guiding search in continuous state-action spaces by learning an action sampler from off-target search experience
Por: Kaelbling, Leslie P., et al.
Publicado em: (2021)