A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring

Advances in the separation and functionalization of single walled carbon nanotubes (SWCNT) by their electronic type have enabled the development of ratiometric fluorescent SWCNT sensors for the first time. Herein, single chirality SWCNT are independently functionalized to recognize either nitric oxi...

Full description

Bibliographic Details
Main Authors: Giraldo, Juan P., Jain, Rishabh M., Wong, Min Hao, Iverson, Nicole M., Ben-Naim, Micha, Strano, Michael S., Landry, Markita Patricia, Kwak, Seonyeong
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:en_US
Published: Wiley Blackwell 2016
Online Access:http://hdl.handle.net/1721.1/102316
https://orcid.org/0000-0002-5832-8522
https://orcid.org/0000-0002-6960-1985
https://orcid.org/0000-0003-2944-808X
https://orcid.org/0000-0001-6988-9096
https://orcid.org/0000-0002-5166-1410
_version_ 1826200073180020736
author Giraldo, Juan P.
Jain, Rishabh M.
Wong, Min Hao
Iverson, Nicole M.
Ben-Naim, Micha
Strano, Michael S.
Landry, Markita Patricia
Kwak, Seonyeong
author2 Massachusetts Institute of Technology. Department of Chemical Engineering
author_facet Massachusetts Institute of Technology. Department of Chemical Engineering
Giraldo, Juan P.
Jain, Rishabh M.
Wong, Min Hao
Iverson, Nicole M.
Ben-Naim, Micha
Strano, Michael S.
Landry, Markita Patricia
Kwak, Seonyeong
author_sort Giraldo, Juan P.
collection MIT
description Advances in the separation and functionalization of single walled carbon nanotubes (SWCNT) by their electronic type have enabled the development of ratiometric fluorescent SWCNT sensors for the first time. Herein, single chirality SWCNT are independently functionalized to recognize either nitric oxide (NO), hydrogen peroxide (H[subscript 2]O[subscript 2]), or no analyte (remaining invariant) to create optical sensor responses from the ratio of distinct emission peaks. This ratiometric approach provides a measure of analyte concentration, invariant to the absolute intensity emitted from the sensors and hence, more stable to external noise and detection geometry. Two distinct ratiometric sensors are demonstrated: one version for H[subscript 2]O[subscript 2], the other for NO, each using 7,6 emission, and each containing an invariant 6,5 emission wavelength. To functionalize these sensors from SWCNT isolated from the gel separation technique, a method for rapid and efficient coating exchange of single chirality sodium dodecyl sulfate-SWCNT is introduced. As a proof of concept, spatial and temporal patterns of the ratio sensor response to H[subscript 2]O[subscript 2] and, separately, NO, are monitored in leaves of living plants in real time. This ratiometric optical sensing platform can enable the detection of trace analytes in complex environments such as strongly scattering media and biological tissues.
first_indexed 2024-09-23T11:30:44Z
format Article
id mit-1721.1/102316
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:30:44Z
publishDate 2016
publisher Wiley Blackwell
record_format dspace
spelling mit-1721.1/1023162022-09-27T20:01:25Z A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring Giraldo, Juan P. Jain, Rishabh M. Wong, Min Hao Iverson, Nicole M. Ben-Naim, Micha Strano, Michael S. Landry, Markita Patricia Kwak, Seonyeong Massachusetts Institute of Technology. Department of Chemical Engineering Strano, Michael S. Giraldo, Juan P. Landry, Markita Patricia Kwak, Seonyeong Jain, Rishabh M. Wong, Min Hao Iverson, Nicole M. Ben-Naim, Micha Strano, Michael S. Advances in the separation and functionalization of single walled carbon nanotubes (SWCNT) by their electronic type have enabled the development of ratiometric fluorescent SWCNT sensors for the first time. Herein, single chirality SWCNT are independently functionalized to recognize either nitric oxide (NO), hydrogen peroxide (H[subscript 2]O[subscript 2]), or no analyte (remaining invariant) to create optical sensor responses from the ratio of distinct emission peaks. This ratiometric approach provides a measure of analyte concentration, invariant to the absolute intensity emitted from the sensors and hence, more stable to external noise and detection geometry. Two distinct ratiometric sensors are demonstrated: one version for H[subscript 2]O[subscript 2], the other for NO, each using 7,6 emission, and each containing an invariant 6,5 emission wavelength. To functionalize these sensors from SWCNT isolated from the gel separation technique, a method for rapid and efficient coating exchange of single chirality sodium dodecyl sulfate-SWCNT is introduced. As a proof of concept, spatial and temporal patterns of the ratio sensor response to H[subscript 2]O[subscript 2] and, separately, NO, are monitored in leaves of living plants in real time. This ratiometric optical sensing platform can enable the detection of trace analytes in complex environments such as strongly scattering media and biological tissues. National Science Foundation (U.S.) (Grant 1213622) National Science Foundation (U.S.) (Postdoctoral Research Fellowship in Biology Award 1103600) National Science Foundation (U.S.) (Postdoctoral Research Fellowship in Biology Award 1306229) Burroughs Wellcome Fund (Grant 1013994) 2016-04-28T14:18:56Z 2016-04-28T14:18:56Z 2015-05 2015-02 Article http://purl.org/eprint/type/JournalArticle 16136810 1613-6829 http://hdl.handle.net/1721.1/102316 Giraldo, Juan P., Markita P. Landry, Seon-Yeong Kwak, Rishabh M. Jain, Min Hao Wong, Nicole M. Iverson, Micha Ben-Naim, and Michael S. Strano. “A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring.” Small 11, no. 32 (May 15, 2015): 3973–3984. https://orcid.org/0000-0002-5832-8522 https://orcid.org/0000-0002-6960-1985 https://orcid.org/0000-0003-2944-808X https://orcid.org/0000-0001-6988-9096 https://orcid.org/0000-0002-5166-1410 en_US http://dx.doi.org/10.1002/smll.201403276 Small Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Wiley Blackwell Prof. Strano via Erja Kajosalo
spellingShingle Giraldo, Juan P.
Jain, Rishabh M.
Wong, Min Hao
Iverson, Nicole M.
Ben-Naim, Micha
Strano, Michael S.
Landry, Markita Patricia
Kwak, Seonyeong
A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring
title A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring
title_full A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring
title_fullStr A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring
title_full_unstemmed A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring
title_short A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring
title_sort ratiometric sensor using single chirality near infrared fluorescent carbon nanotubes application to in vivo monitoring
url http://hdl.handle.net/1721.1/102316
https://orcid.org/0000-0002-5832-8522
https://orcid.org/0000-0002-6960-1985
https://orcid.org/0000-0003-2944-808X
https://orcid.org/0000-0001-6988-9096
https://orcid.org/0000-0002-5166-1410
work_keys_str_mv AT giraldojuanp aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT jainrishabhm aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT wongminhao aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT iversonnicolem aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT bennaimmicha aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT stranomichaels aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT landrymarkitapatricia aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT kwakseonyeong aratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT giraldojuanp ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT jainrishabhm ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT wongminhao ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT iversonnicolem ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT bennaimmicha ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT stranomichaels ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT landrymarkitapatricia ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring
AT kwakseonyeong ratiometricsensorusingsinglechiralitynearinfraredfluorescentcarbonnanotubesapplicationtoinvivomonitoring