Ultralow Resistance Ohmic Contacts for p-Channel InGaSb Field-Effect Transistors
We demonstrate ultralow ohmic contact resistance to antimonide-based, p-channel quantum-well field-effect transistor (QW-FET) structures using a new p[superscript ±]-InAs/InAsSb cap structure. The incorporation of a p[superscript ±]-InAsSb layer enables the use of a thicker cap with lower sheet resi...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2016
|
Online Access: | http://hdl.handle.net/1721.1/102323 https://orcid.org/0000-0002-6341-9226 |
Summary: | We demonstrate ultralow ohmic contact resistance to antimonide-based, p-channel quantum-well field-effect transistor (QW-FET) structures using a new p[superscript ±]-InAs/InAsSb cap structure. The incorporation of a p[superscript ±]-InAsSb layer enables the use of a thicker cap with lower sheet resistance, resulting in an improved contact resistivity. Using a Pd-based ohmic scheme, the composite cap structure resulted in a 4x reduction in contact resistance compared with a standard p[superscript ±]-InAs cap. This translates into nearly 3x improvement in the gm of fabricated InGaSb p-channel QW-FETs. Furthermore, Ni contacts on the composite cap were fabricated and a contact resistance of 45 Ω · μm was obtained. An accurate contact resistivity extraction in this very low range is possible through nanotransmission line models with sub-100 nm contacts. In devices of this kind with Ni-based contacts, we derive an ultralow contact resistivity of 5.2 · 10[superscript -8] Ω · cm[superscript 2]. |
---|