Distributed Multi-Robot Formation Control among Obstacles: A Geometric and Optimization Approach with Consensus

This paper presents a distributed method for navigating a team of robots in formation in 2D and 3D environments with static and dynamic obstacles. The robots are assumed to have a reduced communication and visibility radius and share information with their neighbors. Via distributed consensus the ro...

Full description

Bibliographic Details
Main Authors: Alonso-Mora, Javier, Montijano, Eduardo, Schwager, Mac, Rus, Daniela L.
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2016
Online Access:http://hdl.handle.net/1721.1/102330
https://orcid.org/0000-0001-5473-3566
https://orcid.org/0000-0003-0058-570X
Description
Summary:This paper presents a distributed method for navigating a team of robots in formation in 2D and 3D environments with static and dynamic obstacles. The robots are assumed to have a reduced communication and visibility radius and share information with their neighbors. Via distributed consensus the robots compute (a) the convex hull of the robot positions and (b) the largest convex region within free space. The robots then compute, via sequential convex programming, the locally optimal parameters for the formation within this convex neighborhood of the robots. Reconfiguration is allowed, when required, by considering a set of target formations. The robots navigate towards the target collision-free formation with individual local planners that account for their dynamics. The approach is efficient and scalable with the number of robots and performs well in simulations with up to sixteen quadrotors.