Origin of oxidized mercury in the summertime free troposphere over the southeastern US

We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place ne...

Full description

Bibliographic Details
Main Authors: Shah, V., Gratz, L. E., Ambrose, J. L., Jaffe, D. A., Campos, T. L., Flocke, F. M., Reeves, M., Stechman, D., Stell, M., Festa, J., Stutz, J., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Tyndall, G. S., Apel, E. C., Hornbrook, R. S., Hills, A. J., Riemer, D. D., Blake, N. J., Cantrell, C. A., Mauldin III, R. L., Jaegle, L., Selin, Noelle E, Song, Sanquan
Other Authors: Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Format: Article
Language:en_US
Published: Copernicus GmbH 2016
Online Access:http://hdl.handle.net/1721.1/102625
https://orcid.org/0000-0002-6396-5622
_version_ 1826203692744835072
author Shah, V.
Gratz, L. E.
Ambrose, J. L.
Jaffe, D. A.
Campos, T. L.
Flocke, F. M.
Reeves, M.
Stechman, D.
Stell, M.
Festa, J.
Stutz, J.
Weinheimer, A. J.
Knapp, D. J.
Montzka, D. D.
Tyndall, G. S.
Apel, E. C.
Hornbrook, R. S.
Hills, A. J.
Riemer, D. D.
Blake, N. J.
Cantrell, C. A.
Mauldin III, R. L.
Jaegle, L.
Selin, Noelle E
Song, Sanquan
author2 Massachusetts Institute of Technology. Institute for Data, Systems, and Society
author_facet Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Shah, V.
Gratz, L. E.
Ambrose, J. L.
Jaffe, D. A.
Campos, T. L.
Flocke, F. M.
Reeves, M.
Stechman, D.
Stell, M.
Festa, J.
Stutz, J.
Weinheimer, A. J.
Knapp, D. J.
Montzka, D. D.
Tyndall, G. S.
Apel, E. C.
Hornbrook, R. S.
Hills, A. J.
Riemer, D. D.
Blake, N. J.
Cantrell, C. A.
Mauldin III, R. L.
Jaegle, L.
Selin, Noelle E
Song, Sanquan
author_sort Shah, V.
collection MIT
description We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m[superscript −3], model: 1.51 ± 0.08 ng m[superscript −3]), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) were below the instrument's detection limit (detection limit per flight: 58–228 pg m[superscript −3]), consistent with model-calculated Hg(II) concentrations of 0–196 pg m[superscript −3]. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 pg m[superscript −3], model: 67 ± 44 pg m[superscript −3]). The highest Hg(II) concentrations, 300–680 pg m[superscript −3], were observed in dry (RH  <  35 %) and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0) + Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0) + Br, result in 1.5–2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the base simulation to 2.8–1.2 months in our sensitivity simulations. In order to maintain the modeled global burden of THg, we need to increase the in-cloud reduction of Hg(II), thus leading to faster chemical cycling between Hg(0) and Hg(II). Observations and model results for the NOMADSS campaign suggest that the subtropical anticyclones are significant global sources of Hg(II).
first_indexed 2024-09-23T12:41:33Z
format Article
id mit-1721.1/102625
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T12:41:33Z
publishDate 2016
publisher Copernicus GmbH
record_format dspace
spelling mit-1721.1/1026252024-05-15T05:21:24Z Origin of oxidized mercury in the summertime free troposphere over the southeastern US Shah, V. Gratz, L. E. Ambrose, J. L. Jaffe, D. A. Campos, T. L. Flocke, F. M. Reeves, M. Stechman, D. Stell, M. Festa, J. Stutz, J. Weinheimer, A. J. Knapp, D. J. Montzka, D. D. Tyndall, G. S. Apel, E. C. Hornbrook, R. S. Hills, A. J. Riemer, D. D. Blake, N. J. Cantrell, C. A. Mauldin III, R. L. Jaegle, L. Selin, Noelle E Song, Sanquan Massachusetts Institute of Technology. Institute for Data, Systems, and Society Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences Selin, Noelle Eckley Song, Shaojie We collected mercury observations as part of the Nitrogen, Oxidants, Mercury, and Aerosol Distributions, Sources, and Sinks (NOMADSS) aircraft campaign over the southeastern US between 1 June and 15 July 2013. We use the GEOS-Chem chemical transport model to interpret these observations and place new constraints on bromine radical initiated mercury oxidation chemistry in the free troposphere. We find that the model reproduces the observed mean concentration of total atmospheric mercury (THg) (observations: 1.49 ± 0.16 ng m[superscript −3], model: 1.51 ± 0.08 ng m[superscript −3]), as well as the vertical profile of THg. The majority (65 %) of observations of oxidized mercury (Hg(II)) were below the instrument's detection limit (detection limit per flight: 58–228 pg m[superscript −3]), consistent with model-calculated Hg(II) concentrations of 0–196 pg m[superscript −3]. However, for observations above the detection limit we find that modeled Hg(II) concentrations are a factor of 3 too low (observations: 212 ± 112 pg m[superscript −3], model: 67 ± 44 pg m[superscript −3]). The highest Hg(II) concentrations, 300–680 pg m[superscript −3], were observed in dry (RH  <  35 %) and clean air masses during two flights over Texas at 5–7 km altitude and off the North Carolina coast at 1–3 km. The GEOS-Chem model, back trajectories and observed chemical tracers for these air masses indicate subsidence and transport from the upper and middle troposphere of the subtropical anticyclones, where fast oxidation of elemental mercury (Hg(0)) to Hg(II) and lack of Hg(II) removal lead to efficient accumulation of Hg(II). We hypothesize that the most likely explanation for the model bias is a systematic underestimate of the Hg(0) + Br reaction rate. We find that sensitivity simulations with tripled bromine radical concentrations or a faster oxidation rate constant for Hg(0) + Br, result in 1.5–2 times higher modeled Hg(II) concentrations and improved agreement with the observations. The modeled tropospheric lifetime of Hg(0) against oxidation to Hg(II) decreases from 5 months in the base simulation to 2.8–1.2 months in our sensitivity simulations. In order to maintain the modeled global burden of THg, we need to increase the in-cloud reduction of Hg(II), thus leading to faster chemical cycling between Hg(0) and Hg(II). Observations and model results for the NOMADSS campaign suggest that the subtropical anticyclones are significant global sources of Hg(II). National Science Foundation (U.S.) (Grant 1217010) 2016-05-23T16:55:02Z 2016-05-23T16:55:02Z 2016-02 2016-01 Article http://purl.org/eprint/type/JournalArticle 1680-7324 1680-7316 http://hdl.handle.net/1721.1/102625 Shah, V., L. Jaegle, L. E. Gratz, J. L. Ambrose, D. A. Jaffe, N. E. Selin, S. Song, et al. “Origin of Oxidized Mercury in the Summertime Free Troposphere over the Southeastern US.” Atmos. Chem. Phys. 16, no. 3 (February 10, 2016): 1511–1530. https://orcid.org/0000-0002-6396-5622 en_US http://dx.doi.org/10.5194/acp-16-1511-2016 Atmospheric Chemistry and Physics Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/ application/pdf Copernicus GmbH Copernicus Publications
spellingShingle Shah, V.
Gratz, L. E.
Ambrose, J. L.
Jaffe, D. A.
Campos, T. L.
Flocke, F. M.
Reeves, M.
Stechman, D.
Stell, M.
Festa, J.
Stutz, J.
Weinheimer, A. J.
Knapp, D. J.
Montzka, D. D.
Tyndall, G. S.
Apel, E. C.
Hornbrook, R. S.
Hills, A. J.
Riemer, D. D.
Blake, N. J.
Cantrell, C. A.
Mauldin III, R. L.
Jaegle, L.
Selin, Noelle E
Song, Sanquan
Origin of oxidized mercury in the summertime free troposphere over the southeastern US
title Origin of oxidized mercury in the summertime free troposphere over the southeastern US
title_full Origin of oxidized mercury in the summertime free troposphere over the southeastern US
title_fullStr Origin of oxidized mercury in the summertime free troposphere over the southeastern US
title_full_unstemmed Origin of oxidized mercury in the summertime free troposphere over the southeastern US
title_short Origin of oxidized mercury in the summertime free troposphere over the southeastern US
title_sort origin of oxidized mercury in the summertime free troposphere over the southeastern us
url http://hdl.handle.net/1721.1/102625
https://orcid.org/0000-0002-6396-5622
work_keys_str_mv AT shahv originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT gratzle originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT ambrosejl originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT jaffeda originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT campostl originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT flockefm originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT reevesm originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT stechmand originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT stellm originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT festaj originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT stutzj originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT weinheimeraj originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT knappdj originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT montzkadd originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT tyndallgs originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT apelec originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT hornbrookrs originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT hillsaj originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT riemerdd originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT blakenj originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT cantrellca originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT mauldiniiirl originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT jaeglel originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT selinnoellee originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus
AT songsanquan originofoxidizedmercuryinthesummertimefreetroposphereoverthesoutheasternus