Congestion Mitigation through Schedule Coordination at JFK: An Integrated Approach

Most flight delays are created by large temporary or long-term imbalances between demand and capacity at the busiest airports. Absent large increases in capacity, airport congestion can only be mitigated through improvements in the utilization of available capacity and the implementation of demand m...

Full description

Bibliographic Details
Main Authors: Jacquillat, Alexandre, Odoni, Amedeo R.
Format: Working Paper
Language:en_US
Published: Massachusetts Institute of Technology. Engineering Systems Division 2016
Online Access:http://hdl.handle.net/1721.1/102978
Description
Summary:Most flight delays are created by large temporary or long-term imbalances between demand and capacity at the busiest airports. Absent large increases in capacity, airport congestion can only be mitigated through improvements in the utilization of available capacity and the implementation of demand management measures. This paper presents an integrated approach that jointly optimizes the airport’s flight schedule at the strategic level and the utilization of airport capacity at the tactical level, subject to scheduling and capacity constraints. The capacity utilization part involves controlling the runway configuration and the balance of arrival and departure service rates to minimize congestion costs. The schedule optimization reschedules a selected set of flights to reduce the demand-capacity mismatches while minimizing interference with airline competitive scheduling. We develop an original iterative solution algorithm that integrates airport stochastic queue dynamics and a Dynamic Programming model of airport operating procedures into an Integer Programming model of flight rescheduling. The algorithm is shown to converge in reasonable computational times and is thus implementable in practice. Extensive computational results for JFK Airport suggest that very substantial delay reductions can be achieved through limited changes in airline schedules. It is also shown that the proposed integrated approach to airport congestion mitigation performs significantly better than the typical sequential approach where scheduling and operational decisions are made separately.