Multiscale modeling of coastal, shelf, and global ocean dynamics

In contemporary ocean science, modeling systems that integrate understanding of complex multiscale phenomena and utilize efficient numerics are paramount. Many of today's fundamental ocean science questions involve multiple scales and multiple dynamics. A new generation of modeling systems woul...

Full description

Bibliographic Details
Main Authors: Lermusiaux, Pierre F. J., Schröter, Jens, Danilov, Sergey, Iskandarani, Mohamed, Pinardi, Nadia, Westerink, Joannes J.
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2016
Online Access:http://hdl.handle.net/1721.1/103132
https://orcid.org/0000-0002-1869-3883
Description
Summary:In contemporary ocean science, modeling systems that integrate understanding of complex multiscale phenomena and utilize efficient numerics are paramount. Many of today's fundamental ocean science questions involve multiple scales and multiple dynamics. A new generation of modeling systems would allow to study such questions quantitatively by being less restrictive dynamically and more efficient numerically than more traditional systems. Such multiscale ocean modeling is the theme of this topical collection. Two large international workshops were organized on this theme, one in Cambridge, USA (IMUM2010), and one in Bremerhaven, Germany (IMUM2011). Contributions from the scientific community were encouraged on all aspects of multiscale ocean modeling from ocean science and dynamics to the development of new computational methods and systems. Building on previous meetings (e.g., Deleersnijder and Lermusiaux 2008; Deleersnijder et al. 2010), the workshop discussions and the final contributions to the topical collection are summarized next.