Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence

The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual...

Full description

Bibliographic Details
Main Authors: Cichy, Radoslaw, Khosla, Aditya, Pantazis, Dimitrios, Torralba, Antonio, Oliva, Aude
Other Authors: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Format: Article
Language:en_US
Published: Springer Nature 2016
Online Access:http://hdl.handle.net/1721.1/103585
https://orcid.org/0000-0002-0007-3352
https://orcid.org/0000-0003-4915-0256
_version_ 1826209566901141504
author Cichy, Radoslaw
Khosla, Aditya
Pantazis, Dimitrios
Torralba, Antonio
Oliva, Aude
author2 Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
author_facet Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Cichy, Radoslaw
Khosla, Aditya
Pantazis, Dimitrios
Torralba, Antonio
Oliva, Aude
author_sort Cichy, Radoslaw
collection MIT
description The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
first_indexed 2024-09-23T14:24:31Z
format Article
id mit-1721.1/103585
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T14:24:31Z
publishDate 2016
publisher Springer Nature
record_format dspace
spelling mit-1721.1/1035852022-10-01T21:11:14Z Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence Cichy, Radoslaw Khosla, Aditya Pantazis, Dimitrios Torralba, Antonio Oliva, Aude Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science McGovern Institute for Brain Research at MIT Cichy, Radoslaw Khosla, Aditya Pantazis, Dimitrios Torralba, Antonio Oliva, Aude The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. National Eye Institute (EY020484) Google (Firm) (Google Research Faculty Award) Alexander von Humboldt-Stiftung (Feodor Lynen Postdoctoral Fellowship) Deutsche Forschungsgemeinschaft (Emmy Noether Program, CI 241/1-1) McGovern Institute Neurotechnology (MINT) program National Science Foundation (U.S.) (NSF Award 1532591) 2016-07-13T15:28:55Z 2016-07-13T15:28:55Z 2016-06 2016-01 Article http://purl.org/eprint/type/JournalArticle 2045-2322 http://hdl.handle.net/1721.1/103585 Cichy, Radoslaw Martin, Aditya Khosla, Dimitrios Pantazis, Antonio Torralba, and Aude Oliva. "Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence." Scientific Reports 6, Article number:27755 (2016), p.1-12. https://orcid.org/0000-0002-0007-3352 https://orcid.org/0000-0003-4915-0256 en_US http://dx.doi.org/10.1038/srep27755 Scientific Reports Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/ application/pdf Springer Nature Scientific Reports
spellingShingle Cichy, Radoslaw
Khosla, Aditya
Pantazis, Dimitrios
Torralba, Antonio
Oliva, Aude
Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
title Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
title_full Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
title_fullStr Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
title_full_unstemmed Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
title_short Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
title_sort comparison of deep neural networks to spatio temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence
url http://hdl.handle.net/1721.1/103585
https://orcid.org/0000-0002-0007-3352
https://orcid.org/0000-0003-4915-0256
work_keys_str_mv AT cichyradoslaw comparisonofdeepneuralnetworkstospatiotemporalcorticaldynamicsofhumanvisualobjectrecognitionrevealshierarchicalcorrespondence
AT khoslaaditya comparisonofdeepneuralnetworkstospatiotemporalcorticaldynamicsofhumanvisualobjectrecognitionrevealshierarchicalcorrespondence
AT pantazisdimitrios comparisonofdeepneuralnetworkstospatiotemporalcorticaldynamicsofhumanvisualobjectrecognitionrevealshierarchicalcorrespondence
AT torralbaantonio comparisonofdeepneuralnetworkstospatiotemporalcorticaldynamicsofhumanvisualobjectrecognitionrevealshierarchicalcorrespondence
AT olivaaude comparisonofdeepneuralnetworkstospatiotemporalcorticaldynamicsofhumanvisualobjectrecognitionrevealshierarchicalcorrespondence