Distributed Learning for Planning Under Uncertainty Problems with Heterogeneous Teams
This paper considers the problem of multiagent sequential decision making under uncertainty and incomplete knowledge of the state transition model. A distributed learning framework, where each agent learns an individual model and shares the results with the team, is proposed. The challenges associat...
Principais autores: | Ure, N. Kemal, Chowdhary, Girish, Chen, Yu Fan, How, Jonathan P., Vian, John |
---|---|
Outros Autores: | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics |
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Springer Netherlands
2016
|
Acesso em linha: | http://hdl.handle.net/1721.1/103618 https://orcid.org/0000-0001-8576-1930 https://orcid.org/0000-0003-3756-3256 |
Registros relacionados
-
Planning under Uncertainty using Nonparametric Bayesian Models
por: Campbell, Trevor, et al.
Publicado em: (2012) -
Adaptive Planning for Markov Decision Processes with Uncertain Transition Models via Incremental Feature Dependency Discovery
por: Geramifard, Alborz, et al.
Publicado em: (2013) -
Health Aware Stochastic Planning For Persistent Package Delivery Missions Using Quadrotors
por: Agha-mohammadi, Ali-akbar, et al.
Publicado em: (2014) -
Predictive Planning for Heterogeneous Human-Robot Teams
por: Ponda, Sameera S., et al.
Publicado em: (2010) -
Experimental Results of Concurrent Learning Adaptive Controllers
por: Chowdhary, Girish, et al.
Publicado em: (2013)