Distributed Learning for Planning Under Uncertainty Problems with Heterogeneous Teams
This paper considers the problem of multiagent sequential decision making under uncertainty and incomplete knowledge of the state transition model. A distributed learning framework, where each agent learns an individual model and shares the results with the team, is proposed. The challenges associat...
Hlavní autoři: | Ure, N. Kemal, Chowdhary, Girish, Chen, Yu Fan, How, Jonathan P., Vian, John |
---|---|
Další autoři: | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics |
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Springer Netherlands
2016
|
On-line přístup: | http://hdl.handle.net/1721.1/103618 https://orcid.org/0000-0001-8576-1930 https://orcid.org/0000-0003-3756-3256 |
Podobné jednotky
-
Planning under Uncertainty using Nonparametric Bayesian Models
Autor: Campbell, Trevor, a další
Vydáno: (2012) -
Adaptive Planning for Markov Decision Processes with Uncertain Transition Models via Incremental Feature Dependency Discovery
Autor: Geramifard, Alborz, a další
Vydáno: (2013) -
Health Aware Stochastic Planning For Persistent Package Delivery Missions Using Quadrotors
Autor: Agha-mohammadi, Ali-akbar, a další
Vydáno: (2014) -
Predictive Planning for Heterogeneous Human-Robot Teams
Autor: Ponda, Sameera S., a další
Vydáno: (2010) -
Experimental Results of Concurrent Learning Adaptive Controllers
Autor: Chowdhary, Girish, a další
Vydáno: (2013)