Distributed Learning for Planning Under Uncertainty Problems with Heterogeneous Teams

This paper considers the problem of multiagent sequential decision making under uncertainty and incomplete knowledge of the state transition model. A distributed learning framework, where each agent learns an individual model and shares the results with the team, is proposed. The challenges associat...

Celý popis

Podrobná bibliografie
Hlavní autoři: Ure, N. Kemal, Chowdhary, Girish, Chen, Yu Fan, How, Jonathan P., Vian, John
Další autoři: Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Médium: Článek
Jazyk:English
Vydáno: Springer Netherlands 2016
On-line přístup:http://hdl.handle.net/1721.1/103618
https://orcid.org/0000-0001-8576-1930
https://orcid.org/0000-0003-3756-3256