Reinforcement learning with natural language signals
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Language: | eng |
Published: |
Massachusetts Institute of Technology
2016
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/103745 |
_version_ | 1826202723852222464 |
---|---|
author | Sidor, Szymon |
author2 | Brian C. Williams. |
author_facet | Brian C. Williams. Sidor, Szymon |
author_sort | Sidor, Szymon |
collection | MIT |
description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016. |
first_indexed | 2024-09-23T12:16:07Z |
format | Thesis |
id | mit-1721.1/103745 |
institution | Massachusetts Institute of Technology |
language | eng |
last_indexed | 2024-09-23T12:16:07Z |
publishDate | 2016 |
publisher | Massachusetts Institute of Technology |
record_format | dspace |
spelling | mit-1721.1/1037452019-04-11T09:30:29Z Reinforcement learning with natural language signals Sidor, Szymon Brian C. Williams. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. Electrical Engineering and Computer Science. Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016. Cataloged from PDF version of thesis. Includes bibliographical references (pages 79-83). In this thesis we introduce a technique that allows one to use Natural Language as part of the state in Reinforcement Learning. We show that it is capable of solving Natural Language problems, similar to Sequence-to-Sequence models, but using multistage reasoning. We use Long Short-Term Memory Networks to parse the Natural Language input, whose final hidden state is used to compute action scores for the Deep Q-learning algorithm. First part of the thesis introduces the necessary theoretical background, including Deep Learning approach to Natural Language Processing, Recurrent Neural Networks and Sequence-to-Sequence modeling. We consider two case studies: translation and dialogue. In addition, we provide an overview of the existing techniques for the Reinforcement Learning problems, with focus on Deep Q-learning algorithm. In the second part of the thesis we present the multi-stage reasoning approach, and demonstrate it on solving the sentence unshuffling problem. It achieves accuracy 5% better than a Sequence-to-Sequence model, while requiring 3 times less examples to converge. Furthermore, we show that our approach is flexible and can be used with multi-modal inputs - Natural Language and agent's sensory data. We propose a system capable of understanding and executing Natural Language commands. It can be used for many different tasks with minimal engineering effort - the only required components being the reward function and example commands. We demonstrate its performance using an experiment in which an agent is required to learn to complete four types of manipulation tasks. The approach achieves nearly perfect performance on two of them and good performance in the two others. by Szymon Sidor. S.M. 2016-07-18T20:05:52Z 2016-07-18T20:05:52Z 2016 2016 Thesis http://hdl.handle.net/1721.1/103745 953582881 eng M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582 83 pages application/pdf Massachusetts Institute of Technology |
spellingShingle | Electrical Engineering and Computer Science. Sidor, Szymon Reinforcement learning with natural language signals |
title | Reinforcement learning with natural language signals |
title_full | Reinforcement learning with natural language signals |
title_fullStr | Reinforcement learning with natural language signals |
title_full_unstemmed | Reinforcement learning with natural language signals |
title_short | Reinforcement learning with natural language signals |
title_sort | reinforcement learning with natural language signals |
topic | Electrical Engineering and Computer Science. |
url | http://hdl.handle.net/1721.1/103745 |
work_keys_str_mv | AT sidorszymon reinforcementlearningwithnaturallanguagesignals |