Automatic identification of artifacts in electrodermal activity data

Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method fo...

Full description

Bibliographic Details
Main Authors: Taylor, Sara Ann, Jaques, Natasha Mary, Chen, Weixuan, Fedor, Szymon, Sano, Akane, Picard, Rosalind W.
Other Authors: Massachusetts Institute of Technology. Media Laboratory
Format: Article
Language:en_US
Published: Institute of Electrical and Electronics Engineers (IEEE) 2016
Online Access:http://hdl.handle.net/1721.1/103781
https://orcid.org/0000-0001-9550-2553
https://orcid.org/0000-0002-8413-9469
https://orcid.org/0000-0003-4484-8946
https://orcid.org/0000-0002-5661-0022
https://orcid.org/0000-0002-9857-0188
https://orcid.org/0000-0003-4133-9230
_version_ 1811070546895437824
author Taylor, Sara Ann
Jaques, Natasha Mary
Chen, Weixuan
Fedor, Szymon
Sano, Akane
Picard, Rosalind W.
author2 Massachusetts Institute of Technology. Media Laboratory
author_facet Massachusetts Institute of Technology. Media Laboratory
Taylor, Sara Ann
Jaques, Natasha Mary
Chen, Weixuan
Fedor, Szymon
Sano, Akane
Picard, Rosalind W.
author_sort Taylor, Sara Ann
collection MIT
description Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection.
first_indexed 2024-09-23T08:37:46Z
format Article
id mit-1721.1/103781
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T08:37:46Z
publishDate 2016
publisher Institute of Electrical and Electronics Engineers (IEEE)
record_format dspace
spelling mit-1721.1/1037812022-09-23T13:26:31Z Automatic identification of artifacts in electrodermal activity data Taylor, Sara Ann Jaques, Natasha Mary Chen, Weixuan Fedor, Szymon Sano, Akane Picard, Rosalind W. Massachusetts Institute of Technology. Media Laboratory Program in Media Arts and Sciences (Massachusetts Institute of Technology) Taylor, Sara Ann Jaques, Natasha Mary Chen, Weixuan Fedor, Szymon Sano, Akane Picard, Rosalind W. Recently, wearable devices have allowed for long term, ambulatory measurement of electrodermal activity (EDA). Despite the fact that ambulatory recording can be noisy, and recording artifacts can easily be mistaken for a physiological response during analysis, to date there is no automatic method for detecting artifacts. This paper describes the development of a machine learning algorithm for automatically detecting EDA artifacts, and provides an empirical evaluation of classification performance. We have encoded our results into a freely available web-based tool for artifact and peak detection. MIT Media Lab Consortium Samsung (Firm) National Institutes of Health (U.S.) (NIH grant R01GM105018) Natural Sciences and Engineering Research Council of Canada Seventh Framework Programme (European Commission) (People Programme (Marie Curie Actions), FP7/2007-2013/ under REA grant agreement #327702) 2016-07-20T19:07:13Z 2016-07-20T19:07:13Z 2015-08 Article http://purl.org/eprint/type/ConferencePaper 978-1-4244-9271-8 INSPEC Accession Number: 15584636 http://hdl.handle.net/1721.1/103781 Taylor, Sara, Natasha Jaques, Weixuan Chen, Szymon Fedor, Akane Sano, and Rosalind Picard. “Automatic Identification of Artifacts in Electrodermal Activity Data.” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (August 2015), 25-29 Aug. 2015, Milan, Italy. pp.1934-1937. https://orcid.org/0000-0001-9550-2553 https://orcid.org/0000-0002-8413-9469 https://orcid.org/0000-0003-4484-8946 https://orcid.org/0000-0002-5661-0022 https://orcid.org/0000-0002-9857-0188 https://orcid.org/0000-0003-4133-9230 en_US http://dx.doi.org/10.1109/EMBC.2015.7318762 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Institute of Electrical and Electronics Engineers (IEEE) MIT web domain
spellingShingle Taylor, Sara Ann
Jaques, Natasha Mary
Chen, Weixuan
Fedor, Szymon
Sano, Akane
Picard, Rosalind W.
Automatic identification of artifacts in electrodermal activity data
title Automatic identification of artifacts in electrodermal activity data
title_full Automatic identification of artifacts in electrodermal activity data
title_fullStr Automatic identification of artifacts in electrodermal activity data
title_full_unstemmed Automatic identification of artifacts in electrodermal activity data
title_short Automatic identification of artifacts in electrodermal activity data
title_sort automatic identification of artifacts in electrodermal activity data
url http://hdl.handle.net/1721.1/103781
https://orcid.org/0000-0001-9550-2553
https://orcid.org/0000-0002-8413-9469
https://orcid.org/0000-0003-4484-8946
https://orcid.org/0000-0002-5661-0022
https://orcid.org/0000-0002-9857-0188
https://orcid.org/0000-0003-4133-9230
work_keys_str_mv AT taylorsaraann automaticidentificationofartifactsinelectrodermalactivitydata
AT jaquesnatashamary automaticidentificationofartifactsinelectrodermalactivitydata
AT chenweixuan automaticidentificationofartifactsinelectrodermalactivitydata
AT fedorszymon automaticidentificationofartifactsinelectrodermalactivitydata
AT sanoakane automaticidentificationofartifactsinelectrodermalactivitydata
AT picardrosalindw automaticidentificationofartifactsinelectrodermalactivitydata