Visualizing Attack of Escherichia coli by the Antimicrobial Peptide Human Defensin 5

Human α-defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits broad-spectrum antimicrobial activity and contributes to innate immunity in the human gut and other organ systems. Despite many years of investigation, its antimicrobial mechanism of action remains unclear. In...

Full description

Bibliographic Details
Main Authors: Chileveru, Haritha Reddy, Lim, Shion A., Chairatana, Phoom, Wommack, Andrew, Chiang, I-Ling, Nolan, Elizabeth Marie
Other Authors: Massachusetts Institute of Technology. Department of Chemistry
Format: Article
Language:en_US
Published: American Chemical Society (ACS) 2016
Online Access:http://hdl.handle.net/1721.1/104065
https://orcid.org/0000-0002-2515-5901
https://orcid.org/0000-0002-6153-8803
https://orcid.org/0000-0002-5356-3638
Description
Summary:Human α-defensin 5 (HD5) is a 32-residue cysteine-rich host-defense peptide that exhibits broad-spectrum antimicrobial activity and contributes to innate immunity in the human gut and other organ systems. Despite many years of investigation, its antimicrobial mechanism of action remains unclear. In this work, we report that HD5[subscript ox], the oxidized form of this peptide that exhibits three regiospecific disulfide bonds, causes distinct morphological changes to Escherichia coli and other Gram-negative microbes. These morphologies include bleb formation, cellular elongation, and clumping. The blebs are up to ∼1 μm wide and typically form at the site of cell division or cell poles. Studies with E. coli expressing cytoplasmic GFP reveal that HD5[subscript ox] treatment causes GFP emission to localize in the bleb. To probe the cellular uptake of HD5[subscript ox] and subsequent localization, we describe the design and characterization of a fluorophore–HD5 conjugate family. By employing these peptides, we demonstrate that fluorophore–HD5[subscript ox] conjugates harboring the rhodamine and coumarin fluorophores enter the E. coli cytoplasm. On the basis of the fluorescence profiles, each of these fluorophore–HD5[subscript ox] conjugates localizes to the site of cell division and cell poles. These studies support the notion that HD5[subscript ox'], at least in part, exerts its antibacterial activity against E. coli and other Gram-negative microbes in the cytoplasm.