High-precision observation of nonvolatile quantum anomalous Hall effect

The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field[superscript 1, 2]. The quantum anomalous Hall (QAH) effe...

Full description

Bibliographic Details
Main Authors: Zhao, Weiwei, Kim, Duk Y., Zhang, Haijun, Assaf, Badih A., Heiman, Don, Zhang, Shou-Cheng, Liu, Chaoxing, Chan, Moses H. W., Chang, Cui-zu, Moodera, Jagadeesh
Other Authors: Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Format: Article
Language:en_US
Published: Nature Publishing Group 2016
Online Access:http://hdl.handle.net/1721.1/104335
https://orcid.org/0000-0001-7413-5715
https://orcid.org/0000-0002-2480-1211
_version_ 1826204192640860160
author Zhao, Weiwei
Kim, Duk Y.
Zhang, Haijun
Assaf, Badih A.
Heiman, Don
Zhang, Shou-Cheng
Liu, Chaoxing
Chan, Moses H. W.
Chang, Cui-zu
Moodera, Jagadeesh
author2 Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
author_facet Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Zhao, Weiwei
Kim, Duk Y.
Zhang, Haijun
Assaf, Badih A.
Heiman, Don
Zhang, Shou-Cheng
Liu, Chaoxing
Chan, Moses H. W.
Chang, Cui-zu
Moodera, Jagadeesh
author_sort Zhao, Weiwei
collection MIT
description The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field[superscript 1, 2]. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin–orbit coupling and ferromagnetism[superscript 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)[subscript 2]Te[subscript 3] films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e[superscript 2] (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e[superscript 2]/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (H[subscript c] > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields.
first_indexed 2024-09-23T12:50:21Z
format Article
id mit-1721.1/104335
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T12:50:21Z
publishDate 2016
publisher Nature Publishing Group
record_format dspace
spelling mit-1721.1/1043352024-07-19T19:53:01Z High-precision observation of nonvolatile quantum anomalous Hall effect High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator Zhao, Weiwei Kim, Duk Y. Zhang, Haijun Assaf, Badih A. Heiman, Don Zhang, Shou-Cheng Liu, Chaoxing Chan, Moses H. W. Chang, Cui-zu Moodera, Jagadeesh Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) Massachusetts Institute of Technology. Department of Physics Chang, Cui-zu Moodera, Jagadeesh The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field[superscript 1, 2]. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin–orbit coupling and ferromagnetism[superscript 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)[subscript 2]Te[subscript 3] films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e[superscript 2] (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e[superscript 2]/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (H[subscript c] > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields. National Science Foundation (U.S.). (DMR-1207469) National Science Foundation (U.S.). (DMR-0907007) National Science Foundation (U.S.). (ECCS-1402738) United States. Office of Naval Research ((N00014-13-1-0301)) National Science Foundation (U.S.). (DMR-0820404, DMR-1420620, Penn State MRSEC) National Science Foundation (U.S.). (DMR-1103159) United States. Department of Energy (DE-AC02-76SF00515) United States. Defense Advanced Research Projects Agency (N66001-11-1-4105) National Science Foundation (U.S.). Center for Integrated Quantum Materials (grant DMR-1231319)) 2016-09-15T19:31:12Z 2016-09-15T19:31:12Z 2015-03 Article http://purl.org/eprint/type/JournalArticle 1476-1122 1476-4660 http://hdl.handle.net/1721.1/104335 Chang, Cui-Zu, Weiwei Zhao, Duk Y. Kim, Haijun Zhang, Badih A. Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses H. W. Chan, and Jagadeesh S. Moodera. “High-Precision Realization of Robust Quantum Anomalous Hall State in a Hard Ferromagnetic Topological Insulator.” Nat Mater 14, no. 5 (March 2, 2015): 473–477. https://orcid.org/0000-0001-7413-5715 https://orcid.org/0000-0002-2480-1211 en_US http://dx.doi.org/10.1038/nmat4204 Nature Materials Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Nature Publishing Group CuiZu Chang and Jagadeesh S. Moodera
spellingShingle Zhao, Weiwei
Kim, Duk Y.
Zhang, Haijun
Assaf, Badih A.
Heiman, Don
Zhang, Shou-Cheng
Liu, Chaoxing
Chan, Moses H. W.
Chang, Cui-zu
Moodera, Jagadeesh
High-precision observation of nonvolatile quantum anomalous Hall effect
title High-precision observation of nonvolatile quantum anomalous Hall effect
title_full High-precision observation of nonvolatile quantum anomalous Hall effect
title_fullStr High-precision observation of nonvolatile quantum anomalous Hall effect
title_full_unstemmed High-precision observation of nonvolatile quantum anomalous Hall effect
title_short High-precision observation of nonvolatile quantum anomalous Hall effect
title_sort high precision observation of nonvolatile quantum anomalous hall effect
url http://hdl.handle.net/1721.1/104335
https://orcid.org/0000-0001-7413-5715
https://orcid.org/0000-0002-2480-1211
work_keys_str_mv AT zhaoweiwei highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT kimduky highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT zhanghaijun highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT assafbadiha highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT heimandon highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT zhangshoucheng highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT liuchaoxing highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT chanmoseshw highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT changcuizu highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT mooderajagadeesh highprecisionobservationofnonvolatilequantumanomaloushalleffect
AT zhaoweiwei highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT kimduky highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT zhanghaijun highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT assafbadiha highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT heimandon highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT zhangshoucheng highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT liuchaoxing highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT chanmoseshw highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT changcuizu highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator
AT mooderajagadeesh highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator