High-precision observation of nonvolatile quantum anomalous Hall effect
The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field[superscript 1, 2]. The quantum anomalous Hall (QAH) effe...
Autores principales: | , , , , , , , , , |
---|---|
Otros Autores: | |
Formato: | Artículo |
Lenguaje: | en_US |
Publicado: |
Nature Publishing Group
2016
|
Acceso en línea: | http://hdl.handle.net/1721.1/104335 https://orcid.org/0000-0001-7413-5715 https://orcid.org/0000-0002-2480-1211 |
_version_ | 1826204192640860160 |
---|---|
author | Zhao, Weiwei Kim, Duk Y. Zhang, Haijun Assaf, Badih A. Heiman, Don Zhang, Shou-Cheng Liu, Chaoxing Chan, Moses H. W. Chang, Cui-zu Moodera, Jagadeesh |
author2 | Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) |
author_facet | Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) Zhao, Weiwei Kim, Duk Y. Zhang, Haijun Assaf, Badih A. Heiman, Don Zhang, Shou-Cheng Liu, Chaoxing Chan, Moses H. W. Chang, Cui-zu Moodera, Jagadeesh |
author_sort | Zhao, Weiwei |
collection | MIT |
description | The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field[superscript 1, 2]. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin–orbit coupling and ferromagnetism[superscript 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)[subscript 2]Te[subscript 3] films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e[superscript 2] (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e[superscript 2]/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (H[subscript c] > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields. |
first_indexed | 2024-09-23T12:50:21Z |
format | Article |
id | mit-1721.1/104335 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T12:50:21Z |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | dspace |
spelling | mit-1721.1/1043352024-07-19T19:53:01Z High-precision observation of nonvolatile quantum anomalous Hall effect High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator Zhao, Weiwei Kim, Duk Y. Zhang, Haijun Assaf, Badih A. Heiman, Don Zhang, Shou-Cheng Liu, Chaoxing Chan, Moses H. W. Chang, Cui-zu Moodera, Jagadeesh Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) Massachusetts Institute of Technology. Department of Physics Chang, Cui-zu Moodera, Jagadeesh The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two-dimensional electron layer under a strong magnetic field[superscript 1, 2]. The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon to that of the QH effect, whereas its physical origin relies on the intrinsic spin–orbit coupling and ferromagnetism[superscript 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Here, we report the experimental observation of the QAH state in V-doped (Bi,Sb)[subscript 2]Te[subscript 3] films with the zero-field longitudinal resistance down to 0.00013 ± 0.00007h/e[superscript 2] (~3.35 ± 1.76 Ω), Hall conductance reaching 0.9998 ± 0.0006e[superscript 2]/h and the Hall angle becoming as high as 89.993° ± 0.004° at T = 25 mK. A further advantage of this system comes from the fact that it is a hard ferromagnet with a large coercive field (H[subscript c] > 1.0 T) and a relative high Curie temperature. This realization of a robust QAH state in hard ferromagnetic topological insulators (FMTIs) is a major step towards dissipationless electronic applications in the absence of external fields. National Science Foundation (U.S.). (DMR-1207469) National Science Foundation (U.S.). (DMR-0907007) National Science Foundation (U.S.). (ECCS-1402738) United States. Office of Naval Research ((N00014-13-1-0301)) National Science Foundation (U.S.). (DMR-0820404, DMR-1420620, Penn State MRSEC) National Science Foundation (U.S.). (DMR-1103159) United States. Department of Energy (DE-AC02-76SF00515) United States. Defense Advanced Research Projects Agency (N66001-11-1-4105) National Science Foundation (U.S.). Center for Integrated Quantum Materials (grant DMR-1231319)) 2016-09-15T19:31:12Z 2016-09-15T19:31:12Z 2015-03 Article http://purl.org/eprint/type/JournalArticle 1476-1122 1476-4660 http://hdl.handle.net/1721.1/104335 Chang, Cui-Zu, Weiwei Zhao, Duk Y. Kim, Haijun Zhang, Badih A. Assaf, Don Heiman, Shou-Cheng Zhang, Chaoxing Liu, Moses H. W. Chan, and Jagadeesh S. Moodera. “High-Precision Realization of Robust Quantum Anomalous Hall State in a Hard Ferromagnetic Topological Insulator.” Nat Mater 14, no. 5 (March 2, 2015): 473–477. https://orcid.org/0000-0001-7413-5715 https://orcid.org/0000-0002-2480-1211 en_US http://dx.doi.org/10.1038/nmat4204 Nature Materials Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf Nature Publishing Group CuiZu Chang and Jagadeesh S. Moodera |
spellingShingle | Zhao, Weiwei Kim, Duk Y. Zhang, Haijun Assaf, Badih A. Heiman, Don Zhang, Shou-Cheng Liu, Chaoxing Chan, Moses H. W. Chang, Cui-zu Moodera, Jagadeesh High-precision observation of nonvolatile quantum anomalous Hall effect |
title | High-precision observation of nonvolatile quantum anomalous Hall effect |
title_full | High-precision observation of nonvolatile quantum anomalous Hall effect |
title_fullStr | High-precision observation of nonvolatile quantum anomalous Hall effect |
title_full_unstemmed | High-precision observation of nonvolatile quantum anomalous Hall effect |
title_short | High-precision observation of nonvolatile quantum anomalous Hall effect |
title_sort | high precision observation of nonvolatile quantum anomalous hall effect |
url | http://hdl.handle.net/1721.1/104335 https://orcid.org/0000-0001-7413-5715 https://orcid.org/0000-0002-2480-1211 |
work_keys_str_mv | AT zhaoweiwei highprecisionobservationofnonvolatilequantumanomaloushalleffect AT kimduky highprecisionobservationofnonvolatilequantumanomaloushalleffect AT zhanghaijun highprecisionobservationofnonvolatilequantumanomaloushalleffect AT assafbadiha highprecisionobservationofnonvolatilequantumanomaloushalleffect AT heimandon highprecisionobservationofnonvolatilequantumanomaloushalleffect AT zhangshoucheng highprecisionobservationofnonvolatilequantumanomaloushalleffect AT liuchaoxing highprecisionobservationofnonvolatilequantumanomaloushalleffect AT chanmoseshw highprecisionobservationofnonvolatilequantumanomaloushalleffect AT changcuizu highprecisionobservationofnonvolatilequantumanomaloushalleffect AT mooderajagadeesh highprecisionobservationofnonvolatilequantumanomaloushalleffect AT zhaoweiwei highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT kimduky highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT zhanghaijun highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT assafbadiha highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT heimandon highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT zhangshoucheng highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT liuchaoxing highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT chanmoseshw highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT changcuizu highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator AT mooderajagadeesh highprecisionrealizationofrobustquantumanomaloushallstateinahardferromagnetictopologicalinsulator |