Direct carrier–envelope phase stabilization of a soliton-effect compressed sub-two-cycle pulse source through nonlinear mixing of solitonic and dispersive waves

We present a carrier–envelope phase (CEP) stabilized sub-two-cycle 5.2 fs pulse source based on soliton-effect self-compression of femtosecond laser pulses in millimetre-long highly nonlinear photonic crystal fibres. We employ a simple and efficient scheme to generate a strong (40–60 dB, configurati...

Full description

Bibliographic Details
Main Authors: Amorim, A. A., Bernardo, L. M., Crespo, H. M., Kaertner, Franz X
Other Authors: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2016
Online Access:http://hdl.handle.net/1721.1/104440
https://orcid.org/0000-0002-8733-2555
Description
Summary:We present a carrier–envelope phase (CEP) stabilized sub-two-cycle 5.2 fs pulse source based on soliton-effect self-compression of femtosecond laser pulses in millimetre-long highly nonlinear photonic crystal fibres. We employ a simple and efficient scheme to generate a strong (40–60 dB, configuration dependent) CEP beat signal directly from the pulse source via f-to-2f interferometry where the second harmonic of the main soliton pulse is mixed with the isolated dispersive blue/green radiation peak that is also generated in the compression process, obviating the need for additional spectral broadening mechanisms.