Characters of (relatively) integrable modules over affine Lie superalgebras

In the paper we consider the problem of computation of characters of relatively integrable irreducible highest weight modules L over finite-dimensional basic Lie superalgebras and over affine Lie superalgebras g. The problem consists of two parts. First, it is the reduction of the problem to the [ba...

Full description

Bibliographic Details
Main Authors: Gorelik, Maria, Kac, Victor
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Springer Japan 2016
Online Access:http://hdl.handle.net/1721.1/104442
https://orcid.org/0000-0002-2860-7811
Description
Summary:In the paper we consider the problem of computation of characters of relatively integrable irreducible highest weight modules L over finite-dimensional basic Lie superalgebras and over affine Lie superalgebras g. The problem consists of two parts. First, it is the reduction of the problem to the [bar over g]-module F(L), where [bar over g] is the associated to L integral Lie superalgebra and F(L) is an integrable irreducible highest weight [bar over g]-module. Second, it is the computation of characters of integrable highest weight modules. There is a general conjecture concerning the first part, which we check in many cases. As for the second part, we prove in many cases the KW-character formula, provided that the KW-condition holds, including almost all finite-dimensional g-modules when g is basic, and all maximally atypical non-critical integrable g-modules when g is affine with non-zero dual Coxeter number.