LesionAir : a low-cost tool for automated skin cancer diagnosis and mapping
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2016.
Autor principal: | Wortman, Tyler David |
---|---|
Otros Autores: | Alexander H. Slocum. |
Formato: | Tesis |
Lenguaje: | eng |
Publicado: |
Massachusetts Institute of Technology
2016
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/1721.1/104499 |
Ejemplares similares
-
LesionAir: An Automated, Low-Cost Vision-Based Skin Cancer Diagnostic Tool
por: Carlson, Jay D., et al.
Publicado: (2019) -
Conditional Random Fields and Supervised Learning in Automated Skin Lesion Diagnosis
por: Paul Wighton, et al.
Publicado: (2011-01-01) -
Super-trustscore: reliable failure detection for automated skin lesion diagnosis
por: Naushad, J, et al.
Publicado: (2024) -
Exploring Edge-Based Segmentation Towards Automated Skin Lesion Diagnosis
por: Lau, Hui Keng, et al.
Publicado: (2018) -
Low-cost simulators for assessing wounds and skin lesions
por: Milena Mendes Jorge, et al.
Publicado: (2025-02-01)