Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method d...

Full description

Bibliographic Details
Main Authors: Senanayake, Sanjaya D., Ma, Wen, Herbert, Francis William, Yildiz, Bilge
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:en_US
Published: American Institute of Physics (AIP) 2016
Online Access:http://hdl.handle.net/1721.1/104888
https://orcid.org/0000-0003-0060-9417
https://orcid.org/0000-0002-2688-5666
Description
Summary:The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr[superscript 1+], Zr[superscript 2+], and Zr[superscript 3+] as non-equilibrium oxidation states, in addition to Zr[superscript 4+] in the stoichiometric ZrO2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr[superscript 0] and Zr[superscript 4+] at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.