Unipotent representations as a categorical centre
Let G(F[subscript q]) be the group of rational points of a split connected reductive group G over the finite field F[subscript q]. In this paper we show that the category of representations of G(F[subscript q]) which are finite direct sums of unipotent representations in a fixed two-sided cell is eq...
Main Author: | Lusztig, George |
---|---|
Other Authors: | Massachusetts Institute of Technology. Department of Mathematics |
Format: | Article |
Language: | en_US |
Published: |
American Mathematical Society (AMS)
2016
|
Online Access: | http://hdl.handle.net/1721.1/105153 https://orcid.org/0000-0001-9414-6892 |
Similar Items
-
Non-Unipotent Representations and Categorical Centers
by: Lusztig, George
Published: (2018) -
Non-unipotent Character Sheaves as a Categorical Centre
by: Lusztig, George
Published: (2018) -
Rationality properties of unipotent representations
by: Lusztig, G.
Published: (2022) -
The Grothendieck group of unipotent representations: A new basis
by: Lusztig, George
Published: (2022) -
Springer’s work on unipotent classes and Weyl group representations
by: Lusztig, George
Published: (2021)