Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form

We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a fini...

Full description

Bibliographic Details
Main Authors: Armstrong, Scott N., Smart, Charles
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2016
Online Access:http://hdl.handle.net/1721.1/105198
Description
Summary:We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a finite range of dependence. The results are new even for linear equations. The arguments rely on a new geometric quantity which is controlled in part by adapting elements of the regularity theory for the Monge–Ampère equation.