Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form
We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a fini...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer Berlin Heidelberg
2016
|
Online Access: | http://hdl.handle.net/1721.1/105198 |
Summary: | We introduce a new method for studying stochastic homogenization of elliptic equations in nondivergence form. The main application is an algebraic error estimate, asserting that deviations from the homogenized limit are at most proportional to a power of the microscopic length scale, assuming a finite range of dependence. The results are new even for linear equations. The arguments rely on a new geometric quantity which is controlled in part by adapting elements of the regularity theory for the Monge–Ampère equation. |
---|