Imaging freeform optical systems designed with NURBS surfaces

The designs of two imaging freeform systems using nonuniform rational basis-spline (NURBS) optical surfaces are described. The first system, a 10  deg×9  degf/2 three-mirror anastigmat has four times higher spatial resolution over the image plane compared with the equivalent conventional rotational...

Full description

Bibliographic Details
Main Authors: Chrisp, Michael P., Echter, Michael A., Primeau, Brian C.
Other Authors: Lincoln Laboratory
Format: Article
Language:en_US
Published: SPIE 2016
Online Access:http://hdl.handle.net/1721.1/105221
Description
Summary:The designs of two imaging freeform systems using nonuniform rational basis-spline (NURBS) optical surfaces are described. The first system, a 10  deg×9  degf/2 three-mirror anastigmat has four times higher spatial resolution over the image plane compared with the equivalent conventional rotational aspheric design, and 2.5 times higher resolution compared with a 10th-order XY polynomial freeform design. The mirrors for the NURBS freeform design have more than twice the asphericity than the conventional rotational and XY polynomial designs. In the second system, a Ritchey–Chretien telescope followed by a two-mirror NURBS freeform corrector is compared to a four-mirror Korsch telescope, for imaging to a visible-infrared imaging spectrometer. The freeform corrector design had 70% smaller spot sizes over the field and eliminated the large tertiary required in Korsch type design. Both of these NURBS freeform designs are possible due to a custom optical design code for fast accurate NURBS optimization, which now has parallel raytracing for thousands of NURBS grid points.