Modeling the slag layer in solid fuel gasification and combustion -- Formulation and sensitivity analysis

A steady-state model has been developed to describe the flow and heat transfer characteristics of the slag layer in solid fuel gasification and combustion. The model incorporates a number of sub-models including one for particle capture, and takes into consideration the temperature and composition d...

Full description

Bibliographic Details
Main Authors: Gazzino, Marco, Yong, Sze Zheng, Ghoniem, Ahmed F
Other Authors: Massachusetts Institute of Technology. Department of Mechanical Engineering
Format: Article
Language:en_US
Published: Elsevier 2016
Online Access:http://hdl.handle.net/1721.1/105393
https://orcid.org/0000-0002-2104-3128
https://orcid.org/0000-0001-8730-272X
Description
Summary:A steady-state model has been developed to describe the flow and heat transfer characteristics of the slag layer in solid fuel gasification and combustion. The model incorporates a number of sub-models including one for particle capture, and takes into consideration the temperature and composition dependent properties of slag, the contribution of momentum of captured particles and the possibility of slag resolidification. An equally important issue is the interaction of the particles colliding with the slag layer. High inertia particles tend to rebound whereas slower particles are trapped in the slag layer. Since only trapped particles are relevant to the slag layer build-up, a particle capture criterion for colliding particles is introduced. The model predicts the local thickness of the molten and the solid slag layers, the average slag velocity, the temperature distribution across the layer and the heat flux to the coolant, taking into account the influence of molten and resolidified slag layers coating the combustor or reactor wall.