Effects of Interfacial Bonding on Friction and Wear at Silica/Silica Interfaces
Static friction between amorphous silica surfaces with a varying number of interfacial siloxane (Si–O–Si) bridges was studied using molecular dynamic simulations. Static friction was found to increase linearly with the applied normal pressure, which can be explained in the framework of Prandlt–Tomli...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer US
2016
|
Online Access: | http://hdl.handle.net/1721.1/105434 https://orcid.org/0000-0003-1630-4052 |
Summary: | Static friction between amorphous silica surfaces with a varying number of interfacial siloxane (Si–O–Si) bridges was studied using molecular dynamic simulations. Static friction was found to increase linearly with the applied normal pressure, which can be explained in the framework of Prandlt–Tomlinson’s model. Friction force was found to increase with concentration of siloxane bridges, but with a decreasing gradient, with the latter being due to interactions between neighboring siloxane bridges. In addition, we identified atomic-level wear mechanisms of silica. These mechanisms include both transfer of individual atoms accompanied by breaking interfacial siloxane bridges and transfer of atomic cluster initialized by rupturing of surface Si–O bonds. Our simulations showed that small clusters are continually formed and dissolved at the sliding interface, which plays an important role in wear at silica/silica interface. |
---|