Validation of genetic algorithm-based optimal sampling for ocean data assimilation
Regional ocean models are capable of forecasting conditions for usefully long intervals of time (days) provided that initial and ongoing conditions can be measured. In resource-limited circumstances, the placement of sensors in optimal locations is essential. Here, a nonlinear optimization approach...
Hlavní autoři: | Heaney, Kevin D., Duda, Timothy F., Lermusiaux, Pierre, Haley, Patrick |
---|---|
Další autoři: | Massachusetts Institute of Technology. Department of Mechanical Engineering |
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Springer Berlin Heidelberg
2016
|
On-line přístup: | http://hdl.handle.net/1721.1/106031 https://orcid.org/0000-0002-1869-3883 |
Podobné jednotky
-
Many Task Computing for Real-Time Uncertainty Prediction and Data Assimilation in the Ocean
Autor: Evangelinos, Constantinos, a další
Vydáno: (2018) -
Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean
Autor: Lermusiaux, Pierre
Vydáno: (2020) -
Energy-optimal path planning in the coastal ocean
Autor: Narayanan Subramani, Deepak, a další
Vydáno: (2018) -
Ocean dynamics and numerical modeling of canyons and shelfbreaks
Autor: Haley, Patrick, a další
Vydáno: (2015) -
A Coupled-Mode Shallow-Water Model for Tidal Analysis: Internal Tide Reflection and Refraction by the Gulf Stream
Autor: Lermusiaux, Pierre F. J., a další
Vydáno: (2017)