Fracton topological order, generalized lattice gauge theory, and duality
We introduce a generalization of conventional lattice gauge theory to describe fracton topological phases, which are characterized by immobile, pointlike topological excitations, and subextensive topological degeneracy. We demonstrate a duality between fracton topological order and interacting spin...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society
2017
|
Online Access: | http://hdl.handle.net/1721.1/106302 https://orcid.org/0000-0002-4420-4932 https://orcid.org/0000-0002-8803-1017 |
Summary: | We introduce a generalization of conventional lattice gauge theory to describe fracton topological phases, which are characterized by immobile, pointlike topological excitations, and subextensive topological degeneracy. We demonstrate a duality between fracton topological order and interacting spin systems with symmetries along extensive, lower-dimensional subsystems, which may be used to systematically search for and characterize fracton topological phases. Commutative algebra and elementary algebraic geometry provide an effective mathematical tool set for our results. Our work paves the way for identifying possible material realizations of fracton topological phases. |
---|