A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra

The Dirac–Dunkl operator on the two-sphere associated to the Z[superscript 3][subscript 2] reflection group is considered. Its symmetries are found and are shown to generate the Bannai–Ito algebra. Representations of the Bannai–Ito algebra are constructed using ladder operators. Eigenfunctions of...

Full description

Bibliographic Details
Main Authors: De Bie, Hendrik, Vinet, Luc, Genest, Vincent
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Springer Berlin Heidelberg 2017
Online Access:http://hdl.handle.net/1721.1/106578
_version_ 1826205131163566080
author De Bie, Hendrik
Vinet, Luc
Genest, Vincent
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
De Bie, Hendrik
Vinet, Luc
Genest, Vincent
author_sort De Bie, Hendrik
collection MIT
description The Dirac–Dunkl operator on the two-sphere associated to the Z[superscript 3][subscript 2] reflection group is considered. Its symmetries are found and are shown to generate the Bannai–Ito algebra. Representations of the Bannai–Ito algebra are constructed using ladder operators. Eigenfunctions of the spherical Dirac–Dunkl operator are obtained using a Cauchy–Kovalevskaia extension theorem. These eigenfunctions, which correspond to Dunkl monogenics, are seen to support finite-dimensional irreducible representations of the Bannai–Ito algebra.
first_indexed 2024-09-23T13:08:13Z
format Article
id mit-1721.1/106578
institution Massachusetts Institute of Technology
language English
last_indexed 2024-09-23T13:08:13Z
publishDate 2017
publisher Springer Berlin Heidelberg
record_format dspace
spelling mit-1721.1/1065782022-09-28T12:11:17Z A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra A Dirac–Dunkl Equation on S2 and the Bannai–Ito Algebra De Bie, Hendrik Vinet, Luc Genest, Vincent Massachusetts Institute of Technology. Department of Mathematics Genest, Vincent The Dirac–Dunkl operator on the two-sphere associated to the Z[superscript 3][subscript 2] reflection group is considered. Its symmetries are found and are shown to generate the Bannai–Ito algebra. Representations of the Bannai–Ito algebra are constructed using ladder operators. Eigenfunctions of the spherical Dirac–Dunkl operator are obtained using a Cauchy–Kovalevskaia extension theorem. These eigenfunctions, which correspond to Dunkl monogenics, are seen to support finite-dimensional irreducible representations of the Bannai–Ito algebra. Natural Sciences and Engineering Research Council of Canada 2017-01-20T21:46:18Z 2017-03-01T16:14:48Z 2016-05 2015-01 2016-05-23T12:09:26Z Article http://purl.org/eprint/type/JournalArticle 0010-3616 1432-0916 http://hdl.handle.net/1721.1/106578 De Bie, Hendrik, Vincent X. Genest, and Luc Vinet. “A Dirac–Dunkl Equation on S 2 and the Bannai–Ito Algebra.” Communications in Mathematical Physics 344, no. 2 (May 9, 2016): 447–464. en http://dx.doi.org/10.1007/s00220-016-2648-1 Communications in Mathematical Physics Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Springer-Verlag Berlin Heidelberg application/pdf Springer Berlin Heidelberg Springer Berlin Heidelberg
spellingShingle De Bie, Hendrik
Vinet, Luc
Genest, Vincent
A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra
title A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra
title_full A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra
title_fullStr A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra
title_full_unstemmed A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra
title_short A Dirac–Dunkl Equation on S[superscript 2] and the Bannai–Ito Algebra
title_sort dirac dunkl equation on s superscript 2 and the bannai ito algebra
url http://hdl.handle.net/1721.1/106578
work_keys_str_mv AT debiehendrik adiracdunklequationonssuperscript2andthebannaiitoalgebra
AT vinetluc adiracdunklequationonssuperscript2andthebannaiitoalgebra
AT genestvincent adiracdunklequationonssuperscript2andthebannaiitoalgebra
AT debiehendrik adiracdunklequationons2andthebannaiitoalgebra
AT vinetluc adiracdunklequationons2andthebannaiitoalgebra
AT genestvincent adiracdunklequationons2andthebannaiitoalgebra
AT debiehendrik diracdunklequationonssuperscript2andthebannaiitoalgebra
AT vinetluc diracdunklequationonssuperscript2andthebannaiitoalgebra
AT genestvincent diracdunklequationonssuperscript2andthebannaiitoalgebra