Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque

This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque...

Full description

Bibliographic Details
Main Authors: Lee, Yoonkyung E., Miller, Owen D., Reid, McMahon Thomas Homer, Johnson, Steven G, Fang, Xuanlai
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:en_US
Published: Optical Society of America 2017
Online Access:http://hdl.handle.net/1721.1/108082
https://orcid.org/0000-0003-2745-2392
https://orcid.org/0000-0001-7327-4967
https://orcid.org/0000-0001-5713-629X
_version_ 1811081573585387520
author Lee, Yoonkyung E.
Miller, Owen D.
Reid, McMahon Thomas Homer
Johnson, Steven G
Fang, Xuanlai
author2 Massachusetts Institute of Technology. Department of Mathematics
author_facet Massachusetts Institute of Technology. Department of Mathematics
Lee, Yoonkyung E.
Miller, Owen D.
Reid, McMahon Thomas Homer
Johnson, Steven G
Fang, Xuanlai
author_sort Lee, Yoonkyung E.
collection MIT
description This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle. The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel basis representation with a fast boundary element method and a standard derivative-free, local optimization algorithm. We analyze the optimization results for 2000 random initial configurations, discuss the tradeoff between robustness and enhancement, and compare the different effects of multipolar plasmon resonances on enhancing force or torque. All results are obtained using open-source computational software available online.
first_indexed 2024-09-23T11:48:47Z
format Article
id mit-1721.1/108082
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:48:47Z
publishDate 2017
publisher Optical Society of America
record_format dspace
spelling mit-1721.1/1080822024-09-19T05:35:09Z Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai Massachusetts Institute of Technology. Department of Mathematics Massachusetts Institute of Technology. Department of Mechanical Engineering Fang, Nicholas X Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle. The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel basis representation with a fast boundary element method and a standard derivative-free, local optimization algorithm. We analyze the optimization results for 2000 random initial configurations, discuss the tradeoff between robustness and enhancement, and compare the different effects of multipolar plasmon resonances on enhancing force or torque. All results are obtained using open-source computational software available online. 2017-04-12T19:36:43Z 2017-04-12T19:36:43Z 2017-03 Article http://purl.org/eprint/type/JournalArticle 1094-4087 http://hdl.handle.net/1721.1/108082 Lee, Yoonkyung E. et al. “Computational Inverse Design of Non-Intuitive Illumination Patterns to Maximize Optical Force or Torque.” Optics Express 25.6 (2017): 6757. https://orcid.org/0000-0003-2745-2392 https://orcid.org/0000-0001-7327-4967 https://orcid.org/0000-0001-5713-629X en_US https://doi.org/10.1364/OE.25.006757 Optics Express Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Optical Society of America Lee
spellingShingle Lee, Yoonkyung E.
Miller, Owen D.
Reid, McMahon Thomas Homer
Johnson, Steven G
Fang, Xuanlai
Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
title Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
title_full Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
title_fullStr Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
title_full_unstemmed Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
title_short Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
title_sort computational inverse design of non intuitive illumination patterns to maximize optical force or torque
url http://hdl.handle.net/1721.1/108082
https://orcid.org/0000-0003-2745-2392
https://orcid.org/0000-0001-7327-4967
https://orcid.org/0000-0001-5713-629X
work_keys_str_mv AT leeyoonkyunge computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque
AT millerowend computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque
AT reidmcmahonthomashomer computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque
AT johnsonsteveng computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque
AT fangxuanlai computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque