Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque
This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Optical Society of America
2017
|
Online Access: | http://hdl.handle.net/1721.1/108082 https://orcid.org/0000-0003-2745-2392 https://orcid.org/0000-0001-7327-4967 https://orcid.org/0000-0001-5713-629X |
_version_ | 1811081573585387520 |
---|---|
author | Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai |
author2 | Massachusetts Institute of Technology. Department of Mathematics |
author_facet | Massachusetts Institute of Technology. Department of Mathematics Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai |
author_sort | Lee, Yoonkyung E. |
collection | MIT |
description | This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle. The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel basis representation with a fast boundary element method and a standard derivative-free, local optimization algorithm. We analyze the optimization results for 2000 random initial configurations, discuss the tradeoff between robustness and enhancement, and compare the different effects of multipolar plasmon resonances on enhancing force or torque. All results are obtained using open-source computational software available online. |
first_indexed | 2024-09-23T11:48:47Z |
format | Article |
id | mit-1721.1/108082 |
institution | Massachusetts Institute of Technology |
language | en_US |
last_indexed | 2024-09-23T11:48:47Z |
publishDate | 2017 |
publisher | Optical Society of America |
record_format | dspace |
spelling | mit-1721.1/1080822024-09-19T05:35:09Z Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai Massachusetts Institute of Technology. Department of Mathematics Massachusetts Institute of Technology. Department of Mechanical Engineering Fang, Nicholas X Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai This paper aims to maximize optical force or torque on arbitrary micro- and nanoscale objects using numerically optimized structured illumination. By developing a numerical framework for computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle. The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel basis representation with a fast boundary element method and a standard derivative-free, local optimization algorithm. We analyze the optimization results for 2000 random initial configurations, discuss the tradeoff between robustness and enhancement, and compare the different effects of multipolar plasmon resonances on enhancing force or torque. All results are obtained using open-source computational software available online. 2017-04-12T19:36:43Z 2017-04-12T19:36:43Z 2017-03 Article http://purl.org/eprint/type/JournalArticle 1094-4087 http://hdl.handle.net/1721.1/108082 Lee, Yoonkyung E. et al. “Computational Inverse Design of Non-Intuitive Illumination Patterns to Maximize Optical Force or Torque.” Optics Express 25.6 (2017): 6757. https://orcid.org/0000-0003-2745-2392 https://orcid.org/0000-0001-7327-4967 https://orcid.org/0000-0001-5713-629X en_US https://doi.org/10.1364/OE.25.006757 Optics Express Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Optical Society of America Lee |
spellingShingle | Lee, Yoonkyung E. Miller, Owen D. Reid, McMahon Thomas Homer Johnson, Steven G Fang, Xuanlai Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque |
title | Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque |
title_full | Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque |
title_fullStr | Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque |
title_full_unstemmed | Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque |
title_short | Computational inverse design of non-intuitive illumination patterns to maximize optical force or torque |
title_sort | computational inverse design of non intuitive illumination patterns to maximize optical force or torque |
url | http://hdl.handle.net/1721.1/108082 https://orcid.org/0000-0003-2745-2392 https://orcid.org/0000-0001-7327-4967 https://orcid.org/0000-0001-5713-629X |
work_keys_str_mv | AT leeyoonkyunge computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque AT millerowend computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque AT reidmcmahonthomashomer computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque AT johnsonsteveng computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque AT fangxuanlai computationalinversedesignofnonintuitiveilluminationpatternstomaximizeopticalforceortorque |