Systematic Analysis of Quantitative Logic Model Ensembles Predicts Drug Combination Effects on Cell Signaling Networks
A major challenge in developing anticancer therapies is determining the efficacies of drugs and their combinations in physiologically relevant microenvironments. We describe here our application of “constrained fuzzy logic” (CFL) ensemble modeling of the intracellular signaling network for predictin...
Main Authors: | Morris, Melody Kay, Clarke, David C., Osimiri, Lindsey C., Lauffenburger, Douglas A |
---|---|
Outros autores: | Massachusetts Institute of Technology. Department of Biological Engineering |
Formato: | Artigo |
Idioma: | en_US |
Publicado: |
Nature Publishing Group
2017
|
Acceso en liña: | http://hdl.handle.net/1721.1/108162 |
Títulos similares
-
Querying quantitative logic models (Q2LM) to study intracellular signaling networks and cell-cytokine interactions
por: Morris, Melody Kay, et al.
Publicado: (2013) -
Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli
por: Morris, Melody Kay, et al.
Publicado: (2011) -
Logic-Based Models for the Analysis of Cell Signaling Networks
por: Morris, Melody Kay, et al.
Publicado: (2012) -
Non Linear Programming (NLP) Formulation for Quantitative Modeling of Protein Signal Transduction Pathways
por: Mitsos, Alexander, et al.
Publicado: (2013) -
Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models
por: Saez-Rodriguez, Julio, et al.
Publicado: (2013)