Efficient Uncertainty Quantification for the Periodic Steady State of Forced and Autonomous Circuits
This brief proposes an uncertainty quantification method for the periodic steady-state (PSS) analysis with both Gaussian and non-Gaussian variations. Our stochastic testing formulation for the PSS problem provides superior efficiency over both Monte Carlo methods and existing spectral methods. The n...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2017
|
Online Access: | http://hdl.handle.net/1721.1/108267 https://orcid.org/0000-0002-5880-3151 |
Summary: | This brief proposes an uncertainty quantification method for the periodic steady-state (PSS) analysis with both Gaussian and non-Gaussian variations. Our stochastic testing formulation for the PSS problem provides superior efficiency over both Monte Carlo methods and existing spectral methods. The numerical implementation of a stochastic shooting Newton solver is presented for both forced and autonomous circuits. Simulation results on some analog/RF circuits are reported to show the effectiveness of our proposed algorithms. |
---|