Band-dependent quasiparticle dynamics in the hole-doped Ba-122 iron pnictides

We report on band-dependent quasiparticle dynamics in the hole-doped Ba-122 pnictides measured by ultrafast pump-probe spectroscopy. In the superconducting state of the optimal and over hole-doped samples, we observe two distinct relaxation processes: a fast component whose decay rate increases line...

Full description

Bibliographic Details
Main Authors: Chen, G.F., Luo, J.L., Wang, N.L., Gedik, Nuh, Torchinsky, Darius H., McIver, James, Hsieh, David
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: Elsevier 2017
Online Access:http://hdl.handle.net/1721.1/108455
https://orcid.org/0000-0002-6394-4987
Description
Summary:We report on band-dependent quasiparticle dynamics in the hole-doped Ba-122 pnictides measured by ultrafast pump-probe spectroscopy. In the superconducting state of the optimal and over hole-doped samples, we observe two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component whose relaxation is independent of excitation strength. We argue that these two components reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature in all samples. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands.