An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations

We present an analysis of the evolving comoving cumulative number density of galaxy populations found in the Illustris simulation. Cumulative number density is commonly used to link galaxy populations across different epochs by assuming that galaxies preserve their number density in time. Our analys...

Full description

Bibliographic Details
Main Authors: Wellons, Sarah, Nelson, Dylan, Rodriguez-Gomez, Vicente, McKinnon, Ryan, Pillepich, Annalisa, Ma, Chung-Pei, Springel, Volker, Hernquist, Lars, Torrey, Paul A., Leal Machado, Francisco, Griffen, Brendan F., McKinnon, Ryan Michael, Vogelsberger, Mark
Other Authors: MIT Kavli Institute for Astrophysics and Space Research
Format: Article
Language:en_US
Published: Oxford University Press 2017
Online Access:http://hdl.handle.net/1721.1/108494
https://orcid.org/0000-0002-5653-0786
https://orcid.org/0000-0001-8745-5830
https://orcid.org/0000-0001-9018-1180
https://orcid.org/0000-0001-8593-7692
_version_ 1811077439791562752
author Wellons, Sarah
Nelson, Dylan
Rodriguez-Gomez, Vicente
McKinnon, Ryan
Pillepich, Annalisa
Ma, Chung-Pei
Springel, Volker
Hernquist, Lars
Torrey, Paul A.
Leal Machado, Francisco
Griffen, Brendan F.
McKinnon, Ryan Michael
Vogelsberger, Mark
author2 MIT Kavli Institute for Astrophysics and Space Research
author_facet MIT Kavli Institute for Astrophysics and Space Research
Wellons, Sarah
Nelson, Dylan
Rodriguez-Gomez, Vicente
McKinnon, Ryan
Pillepich, Annalisa
Ma, Chung-Pei
Springel, Volker
Hernquist, Lars
Torrey, Paul A.
Leal Machado, Francisco
Griffen, Brendan F.
McKinnon, Ryan Michael
Vogelsberger, Mark
author_sort Wellons, Sarah
collection MIT
description We present an analysis of the evolving comoving cumulative number density of galaxy populations found in the Illustris simulation. Cumulative number density is commonly used to link galaxy populations across different epochs by assuming that galaxies preserve their number density in time. Our analysis allows us to examine the extent to which this assumption holds in the presence of galaxy mergers or when rank ordering is broken owing to variable stellar growth rates. Our primary results are as follows: (1) the inferred average stellar mass evolution obtained via a constant comoving number density assumption is systematically biased compared to the merger tree results at the factor of ∼2(4) level when tracking galaxies from redshift z = 0 to 2(3); (2) the median number density evolution for galaxy populations tracked forward in time is shallower than for galaxy populations tracked backward; (3) a similar evolution in the median number density of tracked galaxy populations is found regardless of whether number density is assigned via stellar mass, stellar velocity dispersion, or halo mass; (4) explicit tracking reveals a large diversity in the stellar and dark matter assembly histories that cannot be captured by constant number density analyses; (5) the significant scatter in galaxy linking methods is only marginally reduced (∼20 per cent) by considering additional physical galaxy properties. We provide fits for the median evolution in number density for use with observational data and discuss the implications of our analysis for interpreting multi-epoch galaxy property observations.
first_indexed 2024-09-23T10:43:03Z
format Article
id mit-1721.1/108494
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T10:43:03Z
publishDate 2017
publisher Oxford University Press
record_format dspace
spelling mit-1721.1/1084942022-09-27T14:29:45Z An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations Wellons, Sarah Nelson, Dylan Rodriguez-Gomez, Vicente McKinnon, Ryan Pillepich, Annalisa Ma, Chung-Pei Springel, Volker Hernquist, Lars Torrey, Paul A. Leal Machado, Francisco Griffen, Brendan F. McKinnon, Ryan Michael Vogelsberger, Mark MIT Kavli Institute for Astrophysics and Space Research Torrey, Paul A. Leal Machado, Francisco Griffen, Brendan F. McKinnon, Ryan Michael Vogelsberger, Mark We present an analysis of the evolving comoving cumulative number density of galaxy populations found in the Illustris simulation. Cumulative number density is commonly used to link galaxy populations across different epochs by assuming that galaxies preserve their number density in time. Our analysis allows us to examine the extent to which this assumption holds in the presence of galaxy mergers or when rank ordering is broken owing to variable stellar growth rates. Our primary results are as follows: (1) the inferred average stellar mass evolution obtained via a constant comoving number density assumption is systematically biased compared to the merger tree results at the factor of ∼2(4) level when tracking galaxies from redshift z = 0 to 2(3); (2) the median number density evolution for galaxy populations tracked forward in time is shallower than for galaxy populations tracked backward; (3) a similar evolution in the median number density of tracked galaxy populations is found regardless of whether number density is assigned via stellar mass, stellar velocity dispersion, or halo mass; (4) explicit tracking reveals a large diversity in the stellar and dark matter assembly histories that cannot be captured by constant number density analyses; (5) the significant scatter in galaxy linking methods is only marginally reduced (∼20 per cent) by considering additional physical galaxy properties. We provide fits for the median evolution in number density for use with observational data and discuss the implications of our analysis for interpreting multi-epoch galaxy property observations. National Science Foundation (U.S.) (DGE1144152) United States. Department of Energy (DE-FG02-97ER25308) United States. National Aeronautics and Space Administration (NNX12AC67G) National Science Foundation (U.S.) (AST-1312095) 2017-04-28T17:19:16Z 2017-04-28T17:19:16Z 2015-10 2015-08 Article http://purl.org/eprint/type/JournalArticle 0035-8711 1365-2966 http://hdl.handle.net/1721.1/108494 orrey, Paul; Wellons, Sarah; Machado, Francisco; Griffen, Brendan; Nelson, Dylan; Rodriguez-Gomez, Vicente; McKinnon, Ryan, et al. “An Analysis of the Evolving Comoving Number Density of Galaxies in Hydrodynamical Simulations.” Monthly Notices of the Royal Astronomical Society 454, no. 3 (October 14, 2015): 2770–2786. https://orcid.org/0000-0002-5653-0786 https://orcid.org/0000-0001-8745-5830 https://orcid.org/0000-0001-9018-1180 https://orcid.org/0000-0001-8593-7692 en_US http://dx.doi.org/10.1093/mnras/stv1986 Monthly Notices of the Royal Astronomical Society Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf Oxford University Press arXiv
spellingShingle Wellons, Sarah
Nelson, Dylan
Rodriguez-Gomez, Vicente
McKinnon, Ryan
Pillepich, Annalisa
Ma, Chung-Pei
Springel, Volker
Hernquist, Lars
Torrey, Paul A.
Leal Machado, Francisco
Griffen, Brendan F.
McKinnon, Ryan Michael
Vogelsberger, Mark
An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
title An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
title_full An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
title_fullStr An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
title_full_unstemmed An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
title_short An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
title_sort analysis of the evolving comoving number density of galaxies in hydrodynamical simulations
url http://hdl.handle.net/1721.1/108494
https://orcid.org/0000-0002-5653-0786
https://orcid.org/0000-0001-8745-5830
https://orcid.org/0000-0001-9018-1180
https://orcid.org/0000-0001-8593-7692
work_keys_str_mv AT wellonssarah ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT nelsondylan ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT rodriguezgomezvicente ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT mckinnonryan ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT pillepichannalisa ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT machungpei ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT springelvolker ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT hernquistlars ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT torreypaula ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT lealmachadofrancisco ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT griffenbrendanf ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT mckinnonryanmichael ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT vogelsbergermark ananalysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT wellonssarah analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT nelsondylan analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT rodriguezgomezvicente analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT mckinnonryan analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT pillepichannalisa analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT machungpei analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT springelvolker analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT hernquistlars analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT torreypaula analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT lealmachadofrancisco analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT griffenbrendanf analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT mckinnonryanmichael analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations
AT vogelsbergermark analysisoftheevolvingcomovingnumberdensityofgalaxiesinhydrodynamicalsimulations